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Using a time-periodic perturbation of a two-dimensional steady separation bubble on
a plane no-slip boundary to generate chaotic particle trajectories in a localized region
of an unbounded boundary layer flow, we study the impact of various geometrical
structures that arise naturally in chaotic advection fields on the transport of a passive
scalar from a local ‘hot spot’ on the no-slip boundary. We consider here the full
advection-diffusion problem, though attention is restricted to the case of small scalar
diffusion, or large Péclet number. In this regime, a certain one-dimensional unstable
manifold is shown to be the dominant organizing structure in the distribution of the
passive scalar. In general, it is found that the chaotic structures in the flow strongly
influence the scalar distribution while, in contrast, the flux of passive scalar from the
localized active no-slip surface is, to dominant order, independent of the overlying
chaotic advection. Increasing the intensity of the chaotic advection by perturbing the
velocity field further away from integrability results in more non-uniform scalar dis-
tributions, unlike the case in bounded flows where the chaotic advection leads to rapid
homogenization of diffusive tracer. In the region of chaotic particle motion the scalar
distribution attains an asymptotic state which is time-periodic, with the period the
same as that of the time-dependent advection field. Some of these results are under-
stood by using the shadowing property from dynamical systems theory. The shadowing
property allows us to relate the advection-diffusion solution at large Péclet numbers
to a fictitious zero-diffusivity or frozen-field solution, corresponding to infinitely large
Péclet number. The zero-diffusivity solution is an unphysical quantity, but is found
to be a powerful heuristic tool in understanding the role of small scalar diffusion. A
novel feature in this problem is that the chaotic advection field is adjacent to a no-slip
boundary. The interaction between the necessarily non-hyperbolic particle dynamics in
a thin near-wall region and the strongly hyperbolic dynamics in the overlying chaotic
advection field is found to have important consequences on the scalar distribution;
that this is indeed the case is shown using shadowing. Comparisons are made through-
out with the flux and the distributions of the passive scalar for the advection-diffusion
problem corresponding to the steady, unperturbed, integrable advection field.
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1. Introduction
The kinematics of a perfect or non-diffusive tracer is purely advective. In other

words, perfect tracer particles will follow the pathlines of the flow. The dispersion of
these particles is then directly related to the fluid particle trajectories and, in Eckart’s
terminology (see Eckart 1948), is called ‘stirring’. Given some initial distribution of
perfect tracer particles, how this distribution evolves in time is entirely dependent on
the dynamics of particle motion in the flow, and therefore the associated transport
issues are often best understood using the global geometrical viewpoint of dynamical
systems theory. In stirring by chaotic advection (Aref 1984), the individual particle
trajectories might be very complicated, but the underlying geometrical structures
such as invariant manifolds and homoclinic/heteroclinic tangles provide a dynamical
template that in certain cases considerably simplifies questions related to the transport
or dispersion of particles (e.g. see Wiggins 1992). A more realistic scalar impurity
will, however, undergo both advection and diffusion. Thus the time-evolution of some
given initial scalar field will be dictated not only by the purely fluid-mechanical stirring
process but also by the generally slower process of molecular diffusion of the now
diffusive tracer, which is called ‘mixing’ (Eckart 1948). In the Lagrangian framework,
the kinematics of a diffusive tracer has a Brownian-motion component in addition to
the advective component due to the fluid motion, and tracer particles no longer follow
the pathlines of the flow. That raises several fundamental questions regarding the role
of the underlying geometrical structures in the transport of a passive scalar and the
manner in which they influence the time-evolution of a scalar field, particularly at
small scalar diffusivities. Moreover, scalar advection in chaotic flows creates fine-
scale structure since the attendant strong stretching and folding operations result
in arbitrarily small striation thicknesses (Aref & Jones 1989; Jones 1991), so that
even asymptotically small diffusivity cannot be ignored. It is therefore also a matter
of considerable practical importance to incorporate small scalar diffusion. Among
other considerations is the relationship between the stirring and mixing processes, in
particular how small scalar diffusion affects the zero-diffusivity solution corresponding
to pure advection.

An important isssue which has been mostly ignored in the existing literature is the
transport of a passive scalar from an active no-slip boundary into a chaotic advection
field, even though heat and mass transfer from stationary surfaces is common in
engineering applications. A stagnation point (or fixed point) is called hyperbolic if
the velocity field expanded about the stagnation point has no eigen-values with zero
real part. The linear part of the velocity field expanded about any stagnation point on
the no-slip boundary has zero eigen-values, and therefore every point on the no-slip
boundary is non-hyperbolic. The non-hyperbolicity of the stagnation points on a no-
slip boundary makes analysis difficult. Further, stirring, by itself, becomes meaningless
since diffusion is essential for ‘lifting’ heat or a passive impurity from the active no-
slip surface. Given these complications, it is not clear how the geometrical structures
in a chaotic advection field adjacent to an active no-slip surface can influence the
time-dependent distribution of the scalar field as the scalar impurity diffuses into
the flow. Our objective is to investigate some of these issues using a simple two-
dimensional time-periodic separation bubble with chaotic particle trajectories, over a
plane stationary surface.

We use a method devised by Perry & Chong (1986 a) to obtain a simple Taylor-
series representation of a chaotic separation bubble which is also an asymptotically
exact solution of the Navier–Stokes and continuity equations, close to the origin of
the series-expansion. The method relies on the availability of a sufficient number of
topological constraints (Perry & Chong 1986 a) and is therefore particularly well-
suited to study steady two- and three-dimensional separated flows (Perry & Chong
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1986 a; Tobak & Peake 1982; Dallmann 1988) on account of their readily available
topological features such as location and stability-type of stagnation points, loca-
tion of points of zero shear stress on the no-slip boundary, angles of separation
and attachment, etc. Our scheme is to construct a low-order series-representation
of a steady two-dimensional separation bubble at a plane wall and then introduce
time-periodic terms to obtain an unsteady bubble with chaotic particle trajectories,
such that the representation satisfies incompressibility and remains an asymptotically
exact solution of the now time-dependent Navier–Stokes equations. The truncated
series-solution constitutes a simple time-periodic perturbation of an integrable dy-
namical system. There are methods (Perry & Chong 1986 a) for testing the accuracy
of a truncated series-solution over any given region of the flow, but we will not
concern ourselves with identifying a domain of applicability of the series-solution
since attention will be mostly confined to regions close to the origin of the expansion.
Only a localized portion of the plane wall is considered as an active surface such
that finite-time distributions of the scalar field remain confined near the origin of the
series-expansion.

The relative importance of advection versus diffusion is measured by the Péclet
number, which is the ratio of the diffusion and advection time-scales. We are interested
in the regime of small scalar diffusion, or more precisely, the regime where the diffusion
time-scale is much greater than the advection time-scale, which means large Péclet
numbers. At large Péclet numbers, the scalar advection-diffusion problem is best
tackled by random-walk methods based on the theory of Brownian motion (Wang
& Uhlenbeck 1945), and we develop numerical implementations of these methods
to solve for the time-dependent scalar field. These computations show clearly that
for scalar transport with small scalar diffusivity, the unstable manifold of a saddle
point on the boundary corresponding to zero shear stress is the organizing structure
in the distribution of the scalar field, and the time evolution of the scalar field can
be understood in terms of the structure of the unstable manifold. This is a central
theme throughout this paper. In addition we use a different numerical method, the
Wiener bundle method, to compute values of the scalar field. This serves as a check
of our random walk methods, and also sets the stage for our application of the
method of shadowing from dynamical systems theory. We introduce a fictitious ‘zero-
diffusivity’ solution as a heuristic tool in demonstrating the role of the underlying
geometrical structures in the flow and in interpreting the role of slow mixing as
a local smoothing of fine-scale structure in the scalar field, created by the stirring
process.

The hyperbolic invariant set (Smale 1967) associated with Smale horseshoes (Smale
1967) is the prototype of a chaotic dynamical system, and the shadowing lemma
(Bowen 1975) from dynamical systems theory is one of the fundamental results for
the dynamics on a hyperbolic invariant set. Recent work of Klapper (1992 a) has used
shadowing theory (Anosov 1967; Bowen 1975) to study the small-diffusivity scalar
advection-diffusion problem. Asymptotic results were obtained for the restricted class
of uniformly hyperbolic systems, and therefore apply to typical chaotic processes in
only a non-rigorous sense. Justification (Klapper 1992 a) for its validity is based on
existing numerical evidence (Hammel, Yorke & Grebogi 1987, 1988; Grebogi et al.
1990) that typical chaotic dynamical processes have the shadowing property. In a
rough sense, a dynamical system that has the shadowing property is guaranteed to
have a deterministic orbit that remains close to any noisy orbit with bounded noise,
where how ‘close’ depends on the noise level. The shadowing property has been used
previously to reduce bounded additive noise in orbits generated by chaotic dynamical
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systems (Hammel 1990; Farmer & Sidorowich 1991). That the shadowing property
can be used to treat scalar diffusion is not surprising since diffusion can be regarded
as a noisy component in the kinematics of a diffusive tracer.

We use these ideas to develop a qualitative understanding of our random-walk
solutions of the time-dependent scalar field and the interplay between the stirring and
mixing processes. It is found that increased chaotic advection produces more localized
and non-uniform distributions, even in regions of the flow that have no islands of
stability bounded by invariant closed curves; near integrability, such curves will be
provided by Kolmogorov–Arnold–Moser (KAM) tori and island bands, but as one
perturbs the dynamical system further away from integrability there are no surviving
invariant closed curves, and we choose such a parameter-regime to emphasize our
result. The phenomenon contrasts sharply with that in the case of chaotic advection in
bounded domains where the chaotic particle motion promotes rapid homogenization
(Jones 1991) of diffusive tracer, giving rise to an asymptotically uniform scalar
distribution. Reasons for this phenomenon are sought using shadowing theory. The
method of shadowing also helps us understand that the form of the asymptotic
distribution and the time-scale over which it is attained is also intimately linked
with the geometrical structures in the flow, and the connection is made explicit
by considering the details of exact dynamical trajectories that ‘shadow’ the ‘noisy’
Wiener trajectories of a diffusive tracer. We also show how the presence of the plane
wall and the consequent regular dynamics of particles in a narrow near-wall region
strongly influences the time-evolution of the scalar field, thus underlining the role of
non-hyperbolicity at the wall. In engineering applications the flux of a passive scalar,
integrated over the active surface, is a quantity of considerable practical importance;
our computations show it is largely independent of the details of the chaotic advection-
diffusion phenomena above the wall, for the class of flows considered. Perturbation
arguments in the thermal boundary layer adjacent to the active no-slip surface further
clarify this issue.

The organization of this paper is as follows. In § 2 we construct an approximate
representation of a chaotic separation bubble over a plane wall. In § 3 we set up
the scalar advection-diffusion problem. Numerical schemes are developed to obtain
finite-time solutions of the large-Péclet-number or small-diffusivity advection-diffusion
problem. In § 4, a ‘zero-diffusivity’ solution is constructed by solving for the scalar
field in the thermal boundary layer at the wall at small time and treating this as an
‘initial distribution’ of perfect tracers which is subsequently stirred but not mixed by
chaotic advection. In § 5 we apply shadowing theory to our scalar advection-diffusion
problem. We end with a discussion and concluding remarks in § 6.

2. Time-periodic separation bubble at a plane wall
We first construct a viscous, incompressible, two-dimensional flow that has the

topology of a steady separation bubble at a plane wall in the form of a Taylor-series
expansion from a point on the no-slip boundary. The construction suggests ways in
which time-dependent terms can be introduced in the vector field such that one obtains
an asymptotically exact representation of a time-periodic bubble with chaotic particle
trajectories. The advantage of the Taylor-series expansion method (Perry & Chong
1986 a) is that one can generate boundary layer flows, especially separation patterns
with desired topological features, as local Taylor-series expansions to arbitrary order,
without regard to the outer inviscid flow. The method assumes the solutions of the
continuity and Navier–Stokes equations for incompressible flow are smooth.
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A point on the plane wall is chosen to be the origin for two-dimensional rectangular
coordinates (x1, x2), where x1 is a coordinate along the wall and x2 is the coordinate
normal to the wall. The velocity vector u(x, t), x ≡ (x1, x2) ∈ R1 × R+, u ∈ R2, is
written in the form of an asymptotic third-order expansion from the origin

ui = Ai + Aijxj + Aijkxjxk + Aijklxjxkxl + O(4), (2.1)

where O(m) represents a homogeneous polynomial of degree n > m. The i, j, k, . . . can
take values of 1 or 2, since the flow is two-dimensional. The coefficients Ai, Aij , etc. are
functions of time if the flow is unsteady, and they are symmetric tensors in all indices
except the first. The number of independent coefficients, Nc, in our two-dimensional
third-order expansion is easily determined (Perry & Chong 1986 a), Nc = 20. The
basic idea behind the method is first to force the tensor coefficients Aijk··· to satisfy
the continuity equation and the boundary conditions. This result for our application
is that six tensor coefficients remain. Imposing the Navier–Stokes equation yields one
additional constraint, the following ordinary differential equation (see Perry & Chong
1986 b):

Ȧ12 = 6ν[2A1112 + A1222], (2.2)

where ν is the kinematic viscosity of the fluid. The remaining degrees of freedom
are determined using the topological constraints that are prescribed by the desired
topology of the separation pattern.

Following Perry & Chong (1986 a), we specify the boundary vorticity w(x2 = 0) to
vary according to the equation

w(x2 = 0) ≡ −∂u1

∂x2

∣∣∣∣
x2=0

= −K(x2
1 − x2

s ), (2.3)

with K > 0, thus generating two points of zero shear stress on the wall at (−xs, 0) and
(+xs, 0), which act as a point of separation and a point of attachment, respectively.
We note that in the time-dependent flow the parameter K can be a function of time.
At this point the asymptotic expansion of (2.1) reduces to

u1 = −Kx2
s x2 + A122x

2
2 +Kx2

1x2 + 3A1122x1x
2
2 + A1222x

3
2 + O(4),

u2 = −Kx1x
2
2 − A1122x

3
2 + O(4).

}
(2.4)

Consider first the time-independent problem. At steady state, (2.2) and (2.3) yield

A1222 = −2K/3.

There are now only two independent unknown coefficients. These are specified using
the two topological constraints that (2.4) must satisfy in order that the steady flow
field has the topology of a symmetrical (about the origin) separation bubble, and these
are: (i) symmetry condition on u2, requiring u2(x1 = 0, x2) = 0, (ii) elliptic stagnation
point at (0, x∗2), 0 < x∗2 � 1. Condition (i) specifies A1122 = 0. Substituting these in
(2.4) and applying condition (ii) gives

−Kx2
s + A122x

∗
2 −

2K

3
x∗

2

2 = 0,

−Kx2
s + 2A122x

∗
2 − 2Kx∗

2

2 > 0,

which yields an elliptic stagnation point on the x2-axis, located at x∗2 ∈ (0, (3/2)1/2xs)
for A122 ∈ ((8/3)1/2Kxs,∞). As A122 →∞, the elliptic stagnation point approaches the
wall, i.e. x∗2 → 0, and the bubble shrinks closer to the wall. As A122 → (8/3)1/2Kxs
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from above, x∗2 → (3/2)1/2xs from below and the bubble grows in size. For A122 <
(8/3)1/2Kxs, there are no stagnation points in the entire domain of the flow. We note
that for A122 ∈ ((8/3)1/2Kxs,∞) there is also a hyperbolic stagnation point or saddle
located at (0, x̄2), and x̄2 ∈ ((3/2)1/2xs,∞); as A122 → ∞, x̄2 → ∞ and the separation
between the two stagnation points is maximum, while as A122 → (8/3)1/2Kxs from
above, x̄2 → (3/2)1/2xs from above so that at A122 = (8/3)1/2Kxs the hyperbolic and
elliptic stagnation points coalesce and disappear as A122 decreases below (8/3)1/2Kxs.
At A122 = 3Kxs, the elliptic stagnation point is located at (0, 0.3625). The hyperbolic
stagnation point or saddle is located at (0, 4.1374). It is therefore sufficiently far away
from the wall to have no bearing on passive scalar transport close to the wall and
is ignored hereafter. With this choice of A122, the time-independent velocity field is
completely specified,

u1 = −Kx2
s x2 + 3Kxsx

2
2 +Kx2

1x2 − 2
3
Kx3

2 + O(4),

u2 = −Kx1x
2
2 + O(4),

}
(2.5)

and is a low-order approximation of a steady two-dimensional separation bubble at a
plane wall. By varying the coefficient A122, the size of the steady separation bubble can
be varied with important consequences on the associated advection-diffusion problem,
and is the subject of § 3.6. At present we continue with our choice of A122 = 3Kxs.
The streamlines (or pathlines) corresponding to the steady velocity field of (2.5) are
shown in figure 1. From a dynamical systems viewpoint, the phase space of (2.5)
has a heteroclinic connection ψh between the point of separation and the point of
attachment, separating bounded and unbounded motion, where ψh is the value of the
time-independent stream function (obtained below) on the separatrix. Introducing a
time-periodic perturbation in (2.5) is expected to destroy this degenerate structure,
giving rise to chaotic particle motion. An obvious way is to break the symmetry in the
steady state. To do so we let A1122(t) = Kβ sin(ωt). The remaining coefficients are left
unchanged. From (2.2), K remains independent of t and hence all remaining tensor
coefficients are also time-independent. Non-dimensionalizing, ui → uiKx

3
s , xi → xixs,

t→ t/Kx2
s , ω → ωKx2

s , the time-dependent velocity field becomes

u1 = −x2 + 3x2
2 + x2

1x2 − 2
3
x3

2 + 3βx1x
2
2 sin(ωt) + O(4),

u2 = −x1x
2
2 − βx3

2 sin(ωt) + O(4).

}
(2.6)

The stream function ψ is easily obtained,

ψ(x1, x2, t) = −x
2
2

2
+ x3

2 +
x2

1x
2
2

2
− x4

2

6
+ βx1x

3
2 sin(ωt) + O(5). (2.7)

Truncated to third order, (2.6) can be expressed in the form

u(x, t) = fu(x) + βgu(x) sin(ωt), (2.8)

where fu ≡ (fu1 , f
u
2) = (−x2 + 3x2

2 + x2
1x2 − 2

3
x3

2, −x1x
2
2), g

u ≡ (gu1 , g
u
2) = (3x1x

2
2, −x3

2),
and β can be considered as the perturbation amplitude, while ω is the frequency of
the perturbation. The associated Poincaré map or time-T map, T = 2π/ω, which
is defined in the usual way in § 3, shows highly irregular motion in the bubble
region indicating chaotic particle trajectories. In physical terms, the time-periodic
perturbation in (2.8) that leads to bubble break-up and chaotic trajectories in the
viscous boundary layer can be attributed to an oscillatory outer inviscid flow. In
particular, it should be noted that the chaotic advection field of (2.8) does not arise
from any inherent oscillatory instability in the equations of motion at large Reynolds
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Figure 1. Streamlines for the steady two-dimensional separation bubble at a plane wall,
obtained using (2.5).

number but, instead, arises from an external forcing presumably caused by the outer
inviscid flow. The Reynolds number, Re = Kx4

s /ν, for our boundary layer flow is
arbitrary, though it must be noted that the region of accuracy of the truncated series
solution shrinks as the Reynolds number is increased (Perry & Chong 1986 a).

Finally, there are alternative schemes for introducing a time-periodic perturbation
in (2.5) such that the time-dependent velocity field remains an asymptotically exact
solution of the Navier–Stokes and continuity equations, and again gives rise to chaotic
particle trajectories; there is of course no unique representation of a two-dimensional
chaotic advection field adjacent to a no-slip boundary. However we shall show that the
qualitative aspects of the associated passive scalar advection-diffusion problem depend
primarily on certain generic structures in these chaotic advection fields, regardless of
the specific form of the equations giving rise to the chaotic particle motion. Section
3.5 deals with this issue by considering an alternative local representation of a chaotic
advection field.

3. Advection-diffusion of a passive scalar at small diffusivity or large Péclet
number

A localized portion of the plane no-slip boundary is considered as an active surface.
In the case of heat transfer, the active surface can be considered as a local ‘hot spot’
at the wall and is modelled as a local step change in temperature with the step placed
symmetrically about the unperturbed bubble. At time t = 0 the temperature has a
dimensionless value of unity at the wall over the dimensionless interval x1 ∈ [−1.5, 1.5]
and is zero everywhere else on the wall and in the fluid. The temperature distribution
at the wall is maintained externally and serves as a time-independent boundary
condition as heat diffuses from the wall and into the fluid. Non-dimensionalizing time
t using the advection time-scale 1/Kx2

s gives the familiar evolution equation for the
advection-diffusion of a scalar field θ(x, t), which can be considered as temperature,

∂θ

∂t
+ u · ∇θ =

1

Pe
∇2θ, (3.1)
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where the Péclet number Pe = Kx4
s /D, with D the scalar diffusivity. The advecting

two-dimensional velocity field u(x, t) is given by (2.8). The following initial and
boundary conditions:

θ(x1, x2 > 0, t = 0) = 0,

θ(x1, x2 = 0, t) = 1−H(|x1| − 1.5),

θ(|x1| → ∞, x2 > 0, t) = 0,

θ(x1, x2 →∞, t) = 0,

with (x1, x2) ∈ R1×R1, completely specify the advection-diffusion problem. H(·) is the
Heaviside step function. In the absence of scalar diffusion the deterministic Lagrangian
motion of a passive scalar is described by the velocity field. Two-dimensional time-
periodic flows have been studied extensively using a dynamical systems approach (e.g.
see Wiggins 1992) and the geometrical structures that arise naturally in the domain
of the flow, such as invariant manifolds, homoclinic/heteroclinic tangles, hyperbolic
invariant sets and KAM tori are well known. However, it is still far from clear how
these structures influence the transport and distribution of a passive scalar in the
presence of scalar diffusion. Our model problem provides a convenient framework
for understanding some of the transport issues that arise naturally in such flows. The
domain of interest is the flow region immediately above the active portion of the wall
and since we will be making frequent reference to this region, we loosely term it as
the ‘bubble-region’.

In the context of dynamical systems theory, the velocity field of (2.8) is a time-
periodic perturbation of a planar Hamiltonian vector field, where the stream function
of (2.7) plays the role of the Hamiltonian. The analysis of the global structure of
the flow is most clearly carried out by studying the associated Poincaré map, which
is the time-T map obtained by considering the discrete motion of points in time-
intervals of one period T of the perturbation, and since the perturbation is also
Hamiltonian the Poincaré map is area-preserving. In this case one would expect
Smale horseshoes, resonance bands and KAM tori to arise in the phase space of (2.8),
which is also the physical space of the flow. However, from the dynamical systems
viewpoint, our problem is non-generic because every point on the no-slip boundary is
a non-hyperbolic stagnation point, despite the fact that it is a commonly encountered
situation in fluid flows. Consequently, the mathematical theorems (see Wiggins 1990,
1992) proving existence of chaotic dynamics do not apply. For the case of hyperbolic
stagnation points the existence of stable and unstable manifolds is familiar, but
the non-hyperbolic case requires special consideration. In the unperturbed (β = 0)
integrable system, the bubble has a point of separation, denoted by p−, a point of
attachment, denoted by p+, and a heteroclinic connection ψh between p− and p+. The
points p+ ≡ (+1, 0) and p− ≡ (−1, 0), which are the points of zero shear stress on the
wall, are non-hyperbolic stagnation points. The standard scheme of introducing the
phase of the periodic perturbation in (2.8) gives an autonomous vector field

ẋ = fu(x) + βgu(x) sin(φ),

φ̇ = ω,

where the phase space of the autonomous system is now R2 × S1. For β = 0, when
viewed in the three-dimensional phase space R2 × S1, p+ and p− become periodic
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orbits

γ±(t) = (p±, φ(t) = ωt),

with a two-dimensional stable and two-dimensional unstable manifold respectively,
denoted by Ws(γ+(t)) and Wu(γ−(t)). Therefore, Ws(γ+(t)) and Wu(γ−(t)) coincide
along a two-dimensional heteroclinic manifold, Γγ . For β 6= 0, it is easily verified
from (2.8) that p± persist as the points of zero shear stress on the wall, which
implies p±β = p± (Ghosh 1994; Shariff, Pulliam & Ottino 1991), and hence the

periodic orbits for β 6= 0 are γ±β (t) = γ±(t). However, we note that the invariant
manifold theorem (see Theorem 4.1, Hirsch, Pugh & Shub 1977) for the persistence
of normally hyperbolic invariant manifolds and the persistence and smoothness of
their stable and unstable manifolds (at sufficiently small β) does not apply to γ±(t);
in our problem, persistence of the invariant manifolds is decided by computation
of the corresponding invariant manifolds of the associated Poincaré map, which we
shall define momentarily. Assuming Ws(γ+(t)) and Wu(γ−(t)) persist for β 6= 0, the
stable and unstable manifolds of γ+

β (t) and γ−β (t), denoted by Ws(γ+
β (t)) and Wu(γ−β (t))

respectively, will generically not coincide. The Poincaré map is defined as a global
cross-section in the usual way,

P
φ̄
β : Σφ̄ → Σφ̄,

(x1(φ̄), x2(φ̄)) 7→ (x1(φ̄+ 2π), x2(φ̄+ 2π)).

The intersection with Σφ̄ of the stable and unstable manifolds of γ+
β (t) and γ−β (t)

respectively are denoted as

Ws
β(φ̄) ≡Ws(γ+

β (t)) ∩ Σφ̄,

Wu
β (φ̄) ≡Wu(γ−β (t)) ∩ Σφ̄.

Rom-Kedar, Leonard & Wiggins (1990) considered the transport of a passive scalar in
the absence of scalar diffusion in a similar problem and found the unstable manifold,
i.e. Wu

β (φ̄), as the dominant organizing structure. They considered the evolution of an
arbitrary blob of fluid under several iterations of the Poincaré map and showed that
the unstable manifold behaves in some sense as an attractor since neighbourhoods of
Wu

β (φ̄) are stretched along Wu
β (φ̄) and flattened in a complementary direction under

forward iterations of P φ̄
β . Of course, because of the area-preserving property of P φ̄

β

that derives from the incompressibility of the fluid, Wu
β (φ̄) is not an attractor in

the usual sense. Our main goal in this section is to motivate the following: for scalar
transport with small scalar diffusivity, the unstable manifold Wu

β (φ̄) continues to be the
organizing structure in the distribution of the scalar field and the time evolution of the
scalar field for the β 6= 0 case can be understood in terms of the structure of Wu

β (φ̄).
Additionally, there are other important considerations, some of which have been
outlined in the Introduction: for example the role of hyperbolicity and the strong
stretching and folding properties characteristic of chaotic advection fields, the role
of non-hyperbolicity at the wall, the asymptotic state of the scalar distribution, etc.,
and to what extent they contribute to our understanding of the advection-diffusion
process and its interplay with the geometrical structures in the flow. As a first step
towards investigating these issues, finite-time distributions of the scalar field are
obtained by solving (3.1) numerically. We confine our attention entirely to the case of
small scalar diffusivity, or large Péclet number; large scalar diffusivity would result
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in a diffusively dominant advection-diffusion process, in which case the role of the
geometrical structures in the flow can be expected to be less prominent.

3.1. A random-walk scheme for solving the advection-diffusion equation

The singular limit of large Péclet number is not easily tackled by any numerical
scheme that embraces the Eulerian approach and tries to solve the partial differential
equation of (3.1) directly. At large Pe, a thermal boundary layer will form in the
vicinity of the active surface of thickness proportional to Pe−1/3 (see § 3.4), which
places severe constraints on the spatial resolution obtainable in the boundary layer in
a finite-difference solution of (3.1) at large Pe. In contrast, a random-walk solution
uses a Lagrangian approach based on the stochastic differential corresponding to the
scalar advection-diffusion equation. Saffman (1959) used a random-walk approach
to study the effects of molecular diffusion on the transport of a passive scalar in
flow through porous media. Chorin (1973) extended the random-walk approach to
numerical solutions of the vorticity diffusion equation corresponding to the Navier–
Stokes equations for incompressible flow in two space dimensions at large Reynolds
numbers, where the problem is complicated by the fact that the vorticity is not a
passive scalar. Since we require solutions to (3.1) at Péclet numbers so large that
finite-difference methods are difficult to apply, a random-walk or Brownian motion
scheme is developed below for solving the scalar advection-diffusion problem.

The active boundary is imagined to be a constant temperature bath. The physical
process of diffusion of passive scalar from the active portion of the plane boundary
into the flow is imitated by numerically simulating a constant temperature bath. The
bath has width identical to the extent of the active surface and depth chosen according
to the Péclet number. At t = 0, N points are randomly distributed in the bath at
locations r0

i = (x0
1i, x

0
2i), i = 1, ..., N, N large, each of mass 1/Nd where Nd = N/Abath

is the number density of the randomly distributed points, and Abath is the area of the
constant temperature bath. The evolution of temperature in the bath is governed by
the simple transient diffusion equation

∂θ

∂t
=

1

Pe
∇2θ, (3.2)

with initial data θ(x, t = 0) = 1 and adiabatic boundary conditions, which of course
has solution θ(x, t) = 1. The probabilistic interpretation of the transient diffusion
equation with given initial data is well known (Chandrasekhar 1943). For a brief survey
with view to applications in numerical schemes based on random-walk methods, see
Chorin & Marsden (1979). The stochastic differential corresponding to (3.2) is simply

dx = (2/Pe)1/2dWt,

where Wt is a two-dimensional Wiener process (Arnold 1974). Hence, in every time-
step ∆t, the points may be advanced according to

x1
n+1
i = x1

n
i + η, x2

n+1
i = x2

n
i + ξ, n = 0, 1, . . . ,

where η, ξ are Gaussianly distributed random variables, each with mean zero and
variance 2∆t/Pe, and x1

n
i ≡ x1i(n∆t), x2

n
i ≡ x2i(n∆t). Except for the boundary that

coincides with the wall, the remaining three boundaries of the constant temperature
bath behave as adiabatic surfaces and are therefore treated as perfectly reflecting
boundaries (Chandrasekhar 1943). As for the wall, when a point jumps across the
wall and into the domain of the flow, a new point of identical mass is created at the
reflection point inside the bath. To ensure that the reflection point is almost always
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– i.e. with probability arbitrarily close to unity – inside the bath, it is sufficient to
choose the depth of the bath as 10σ where σ is the standard deviation of the Gaussian
‘jumps’. In every time-step, a constant number density Nd of randomly distributed
points of masses 1/Nd is maintained inside the bath and it therefore simulates a
constant temperature bath. Points that jump across the wall, from the bath and
into the domain of the flow, have trajectories generated by the stochastic differential
corresponding to (3.1)

dx = udt+ (2/Pe)1/2dWt. (3.3)

A point in the domain of the flow, i.e. at location r0 = (x0
1, x

0
2) with x0

2 > 0, is therefore
advanced according to

xn+1
1 = xn1 + ∆xn1 + η, xn+1

2 = xn2 + ∆xn2 + ξ, (3.4)

where

xn1 = x1(n∆t), x
n
2 = x2(n∆t), ∆xn1 =

∫ (n+1)∆t

n∆t

u1dt, ∆xn2 =

∫ (n+1)∆t

n∆t

u2dt,

and η, ξ are Gaussianly distributed random variables as before; the velocity field is
integrated using fourth-order Runge–Kutta scheme. The Gaussianly distributed ran-
dom variables η and ξ are obtained from uniformly distributed computer-generated
pseudo-random numbers using standard algorithms based on the Box–Mueller trans-
formation (e.g. see Press et al. 1986). The increment (∆xn1,∆x

n
2) is the deterministic

jump in a time-step ∆t arising from the continuum velocity of a fluid particle, while
(η, ξ) is a random component describing the Brownian motion of the molecules. For
the advection-diffusion process in the domain of the flow, the wall specifies a constant
temperature boundary condition and can therefore be treated as a perfectly absorb-
ing boundary (Chandrasekhar 1943). Hence, trajectories generated by (3.3) that cross
the wall, which is signalled by xn2 6 0, are terminated. After n steps, the expected
distribution of mass on the upper half-plane, x2 > 0, gives the temperature field at
time t = n∆t. Therefore the temperature at time t at a point (x1, x2), x2 > 0, is given
by

θ(x1, x2, t) = lim
N→∞

number of points contained in I1(x1)× I2(x2) at time t

NdAbox
,

where I1(x1) = [x1 − 1
2
∆x1, x1 + 1

2
∆x1], I2(x2) = [x2 − 1

2
∆x2, x2 + 1

2
∆x2], I1(x1)× I2(x2)

is the Cartesian product of the two closed intervals, and Abox = ∆x1∆x2. The flux
across the wall, integrated over the active portion of the wall, is given by the expected
rate at which points cross the active portion of the wall (Chandrasekhar 1943). The
wall-integrated flux Jw at time t = n∆t is simply

Jw(t) = lim
N→∞

∆N(n)

Nd∆t
,

where ∆N(n) is the net number of points crossing the active portion of the wall at
the nth time-step. Therefore ∆N(n) is the number of points that jump from the bath
and into the flow at the nth time-step minus the number of points in the domain of
the flow that jump across the active surface at the nth time-step and are terminated.
We compute the wall-integrated flux averaged over time T = 2k∆t, which is given by

〈Jw(t)〉T = lim
N→∞

∆N(n, k)

Nd(2k∆t)
,

where ∆N(n, k) is the net number of points crossing the active surface in 2k time-steps,
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from time (n− k)∆t to (n+ k)∆t. Therefore 〈Jw(t)〉T is in fact

〈Jw(t)〉T =
1

T

∫ t+T/2

t−T/2

(∫ x1=1.5

x1=−1.5

− 1

Pe

∂θ

∂x2

(x1, x2, s)
∣∣∣
x2=0

dx1

)
ds.

Standard error-estimation techniques (Ghosh 1994) show the error in the computed
scalar field θ(x1, x2, t) is O((NdAbox)

−1/2). The consequent slow convergence, which is
typical of random-walk methods, requires that N be very large especially when high
spatial resolution, i.e. small ∆x1∆x2 or small Abox, is desired. In our computations N
is O(106). However, it is not hard to realize that the random-walk scheme described
above is ideally suited for parallel computation and an implementation of the method
on a parallel computer like the 512 node Intel Touchstone Delta reduces computation
time by several orders of magnitude. In fact, our code can use any number of
compute nodes and proceeds in parallel by distributing N equally among the number
of available nodes, with an absolute minimum of node interactions. We note that
there are alternative random-walk schemes that can be formulated for our advection-
diffusion problem, but these were discarded in favour of the scheme described above
on account of the ease with which the computations can be rendered parallel.

3.2. The Wiener bundle method

The results obtained using the random-walk method above were verified by comparing
the solution of the scalar field at several points in the domain of interest against
point values computed using an independent numerical scheme also based on the
theory of Brownian motion, called the Wiener bundle method. The method has been
used previously to study heat conduction problems (Haji-Sheikh & Sparrow 1967), to
treat the advection-diffusion of magnetic field in magnetohydrodynamics (Molchanov,
Ruzmaikin & Sokolov 1985; Klapper 1992 b), and in the study of chaotic advection
of scalars (Klapper 1992 a). While the Wiener bundle method is generally inefficient
for whole field computations, it has the unique advantage of allowing calculation of
the scalar value at a single point without calculating the whole field. Therefore, when
only a few point values are desired the method offers a distinct advantage over other
numerical schemes. The Wiener bundle method will also be used in § 5 to gain useful
insights into the small diffusivity scalar advection-diffusion problem, and we therefore
outline it briefly. The method is also called a pseudo-Lagrangian method since it is a
generalization of the Lagrangian solution for zero diffusivity. At Pe = ∞, i.e. for the
case of zero-diffusivity, (3.1) is solved by considering θ as constant along pathlines
in the flow. Hence θ(x(x0, t), t) = θ(x0, t0), t > t0, where x(x0, t) is the Lagrangian
variable defined by dx = udt, x(x0, t0) = x0. The zero-diffusivity Lagrangian solution
can be generalized to the case of non-zero diffusivity, i.e. finite Pe, by averaging over
a bundle of random (Wiener) trajectories. A Wiener trajectory is generated using the
stochastic differential of (3.3). Therefore, starting at a point x at time t and integrating
backwards in time using (3.3) yields a ‘bundle’ of Wiener trajectories, each of which
starts from a random point x0 at initial time t0 and reaches x at time t. Each Wiener
trajectory ‘carries’ with it the scalar value θ of the point from which it originates,
just as in the zero-diffusivity Lagrangian solution, and an expectation taken over the
bundle of Wiener trajectories determines θ(x, t). The Wiener bundle solution of (3.1)
is given by

θ(x, t) = 〈θ(x0, t0)〉, (3.5)
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Figure 2. The unstable manifold Wu
β at ω = 0.72 and (a) β = 0.6, (b) β = 0.2.

where the average is taken over all Wiener trajectories starting at a random point x0

and ending at a given non-random point x in time t− t0. It is easy to verify that (3.5)
is indeed a solution of (3.1). For a rigorous proof, see McKean (1969).

3.3. Scalar distributions – numerical simulation results

The unstable manifold of p− for the Poincaré map corresponding to the cross-section

φ̄ = 0, Pβ ≡ P φ̄=0
β , denoted Wu

β ≡Wu
β (φ̄ = 0), is computed for two different values of

the perturbation amplitude, β = 0.2, 0.6, keeping the frequency of the perturbation
fixed at ω = 0.72, and these are shown in figure 2. Finite-time distributions of the
scalar field at Pe = 2.5 × 104 are obtained numerically on the 512 node Intel Delta
using the random-walk method for whole field computations described earlier. The
scalar field is computed at several times that are integral multiples of the perturbation
period at again β = 0.2, 0.6, and these are displayed in figures 3(a–d), 4(a–d). The
time-evolution of the scalar field is also obtained for β = 0, i.e. for the steady bubble,
at the same Pe for the sake of comparison and is shown in figure 5(a–d). For the
steady bubble the asymptotic or long-time scalar field distribution is expected to
be uniform in the circulation or core region of the bubble (Batchelor 1956; Pan &
Acrivos 1968), while there will be boundary layers along the wall and straddling the
separatrix, ψh. The diffusive time-scale, being of the order of the Péclet number, is
very large and since the asymptotic distribution is attained over the diffusion time-
scale (Rhines & Young 1983) it would take a prohibitively long-time computation
to reproduce the expected asymptotic distribution. However, it is clear from figure
5(a–d) that the distribution of the scalar field for the case of steady (β = 0) advection
is tending to the expected asymptotic distribution as t increases. Comparing figures 3,
4 with figure 5, it is clearly evident that the evolution of the scalar field for the β 6= 0
case is markedly different from the β = 0 case. Comparisons of figure 3(a–d) with
figure 2(a), and figure 4(a–d) with figure 2(b) shows the dominating role of Wu

β in the
time-evolution of the scalar field. We note that for the parameter values considered
here the size of KAM islands is negligible and, as far as the distribution of the scalar
field is concerned, Wu

β (φ̄) is the main organizing structure over the entire domain of
the flow with the exception of a narrow near-wall boundary layer, as is evident from
figures 3, 4.
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Figure 3. Scalar field for β = 0.6, ω = 0.72, Pe = 2.5× 104, at (a) t = 5T , (b) t = 10T ,
(c) t = 20T , (d) t = 30T , T = 2π/ω.

Notice further that the distribution of the scalar field is more uniform and
widespread for the near-integrable system (figure 4) in contrast to the case with
larger β (figure 3). Comparing figure 3 with figure 4, it is also evident that at larger
β an asymptotic distribution is attained in shorter time. To further pursue this point,
the perturbation amplitude in the chaotic advection field is pushed higher to β = 0.8
while retaining ω = 0.72, and the scalar field is displayed in figure 6(a–d). The scalar
field is almost entirely localized around the unstable manifold of p− and an asymp-
totic distribution is attained in even shorter time. We make a few remarks: chaotic
advection is usually associated with improved stirring (Aref 1984; Khakhar & Ottino
1986) and, consequently, improved mixing (Jones 1991). For chaotic advection in
bounded domains this results in rapid homogenization of the scalar field, irrespective
of the initial distribution; the asymptotic distribution is uniform and the time-scale for
homogenization goes as the logarithm (Jones 1991) of the Péclet number, in contrast
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Figure 4. Scalar field for β = 0.2, ω = 0.72, Pe = 2.5× 104, at (a) t = 5T , (b) t = 10T ,
(c) t = 20T , (d) t = 30T , T = 2π/ω.

to the case when particle trajectories are regular and the time-scale of homogenization
is linear (Rhines & Young 1983) in Pe. However, because of the unbounded nature
of the flow being considered here, the scalar distribution of course never attains a
homogenized state. Indeed, as the chaotic particle motion becomes more widespread
(i.e. at larger β) the scalar distribution becomes more localized and non-uniform.
Therefore, while the time-scale of homogenization is a useful measure of efficiency of
mixing in bounded domains, in unbounded flows there is no analogous physical basis
for defining an efficiency of mixing. Below we consider the case with surviving KAM
tori enclosing the core region of the bubble.

Increasing the frequency ω of the perturbation dramatically changes the structure
of the unstable manifold Wu

β , which now does not sweep out the entire bubble region.
Appearing in the core region of the bubble are KAM tori and island bands which are
impenetrable by the unstable manifold, and Wu

β is no longer the dominant organizing
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Figure 5. Scalar field for the steady separation bubble, for Pe = 2.5× 104, at (a) t = 5T ,
(b) t = 10T , (c) t = 20T , (d) t = 60T , T same as in figures 3, 4.

structure in the time-evolution of the scalar field, though it does influence the scalar
distribution in regions swept by Wu

β . In figure 7 a Poincaré map of the time-periodic
chaotic advection field is obtained at β = 0.2, ω = 2.0, showing the structure of the
KAM tori and island bands. In figure 8 we compute the scalar field at β = 0.2 and
perturbation frequency increased to ω = 2.0, while Pe is again taken to be 2.5× 104;
to compare with previous results, the time-dependent distribution is obtained at the
same times as before. Notice that we are no longer evaluating the scalar field at times
that are integral multiples of the perturbation period corresponding to ω = 2.0, and
therefore the t in figure 8 correspond to different cross-sections φ̄; as φ̄ changes, so
does the geometrical structure of Wu

β (φ̄), which in turn influences the distribution of

the passive scalar in regions swept by Wu
β (φ̄). But in the core region of the bubble the

KAM tori play a role not unlike closed streamlines in the steady bubble as transport
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Figure 6. Scalar field for β = 0.8, ω = 0.72, Pe = 2.5× 104, at (a) t = 5T , (b) t = 10T ,
(c) t = 20T , (d) t = 30T , T = 2π/ω.

across a KAM torus is possible by scalar diffusion only, and the time-evolution of
the scalar field in this core region resembles closely that in the steady-bubble case.
Nothing can be said though about the nature of the asymptotic distribution in this
case.

We conclude this section with a verification of the results obtained from the whole
field computations, using the Wiener bundle method. Centreline profiles of the scalar
field along (x1 = 0, x2 > 0) were extracted from figure 3(a, d), and these are plotted
as solid lines in figure 9. Point values of the scalar field were obtained at the same t
using the Wiener bundle method and these are also displayed in figure 9. The scalar
value at a point on the centreline is obtained by integrating backwards in time a
collection N of ‘particles’ that are located at the given x ≡ (x1 = 0, x2 > 0) at time
t, using the stochastic differential of (3.3). As was mentioned earlier, the wall can
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Figure 7. A Poincaré map of the bubble region for β = 0.2, ω = 2.0.
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Figure 8. Scalar field for β = 0.2, ω = 2.0, Pe = 2.5× 104, at (a) t = 10T , (b) t = 20T ,
where T is same as in figures 3–6, i.e. T = 2π/0.72.

be treated as a perfectly absorbing boundary for a Brownian particle and Wiener
trajectories are terminated on reaching the wall in backward time. The scalar value
θ(x, t) at x ≡ (x1, x2 > 0) at time t is given by

θ =
1

N

N∑
i=1

δwi, (3.6)

where δwi = 1 if the ith particle reaches the active portion of the wall before time
t, and δwi = 0 otherwise. Equation (3.6) is therefore an expectation over the scalar
values ‘carried’ by the Wiener trajectories that arrive at the point x in time t. Standard
error estimates (Ghosh 1994) show the error is O(N−1/2); N was taken to be 2× 104
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Figure 9. Distribution of the scalar field along the centreline (x1 = 0, x2 > 0), extracted from figure
3, at (a) t = 5T , (b) t = 30T , shown in solid lines; T same as in figure 3. Dots represent Wiener
bundle solutions at β = 0.6, ω = 0.72, Pe = 2.5× 104.

in our computations. From figure 9 it is evident that the match between the results
obtained using the two independent random-walk schemes is quite satisfactory.

3.4. Flux of passive scalar from the local active surface into the thermal boundary
layer

The flux at the wall, integrated over the active portion of the wall and averaged over
time T = 2π/ω, is evaluated at every t = m 1

2
T , m an odd integer, for β equal to 0,

0.2, and 0.6, and ω = 0.72, and the results are displayed in figure 10(a). It is evident
that the time-averaged wall-integrated flux approaches an asymptotic value over a
time-scale that appears to be unrelated to the time-scales over which the scalar field
attains an asymptotic distribution away from the wall.

Moreover, the chaotic particle motion increases the asymptotic flux at the wall
only marginally over the steady-advection case (β = 0). The asymptotic value of the
time-averaged wall-integrated flux is evaluated at several perturbation amplitudes, β
ranging from zero to unity (keeping ω and Pe fixed), and these are displayed in figure
10(b). It is clear that there is little or no enhancement over the β = 0 case. Both
observations are closely related to the fact that the dynamics of particle motion in
the near-wall region, as well as the boundary layer distribution of the scalar field, are
largely insensitive to the chaotic advection-diffusion process away from the wall. It is
also observed that the asymptotic value of 〈Jw(t)〉T appears to be independent of the
averaging period T , though averaging over shorter times does increase the scatter in
the data, which is only to be expected in a random-walk computation.

These observations can be explained by considering the relative contributions of
the various terms in the advection-diffusion equation of (3.1) in the near-wall thermal
boundary layer, once the initial transients have died down and the scalar field has
settled into an asymptotic state. We focus our attention on the near-wall thermal
boundary layer at x1 ∈ (−1.5,−1) ∪ (−1, 1.5); we exclude a small neighbourhood of
the separation point p−, where the boundary layer approximation is invalid (Acrivos
& Goddard 1965 ). Using a scaled time variable τ = ωt and the boundary layer
coordinate x̂2 = Pe1/3x2, the energy equation of (3.1) with advection field u given by
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Figure 10. Time-averaged wall-integrated flux 〈Jw(t)〉T for β = 0, 0.2 and 0.6 and asymptotic
〈Jw(t)〉T at several β ∈ [0, 1], for ω = 0.72, Pe = 2.5× 104, and T = 2π/ω.

(2.8) becomes

η
∂θ

∂τ
+ (x1

2 − 1)x̂2

∂θ

∂x1

− x1x̂
2
2

∂θ

∂x̂2

− ∂2θ

∂x̂2
2

+ O(Pe−1/3) = 0, (3.7)

where η = ω/Pe−1/3. For large η, (3.7) is clearly a singular perturbation problem.
We shall restrict attention to the following subcase of η → ∞: ω fixed and Pe → ∞.
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Introducing the small parameter γ = η−1/2 in (3.7) gives

∂θ

∂τ
+ γ2

[
(x1

2 − 1)x̂2

∂θ

∂x1

− x1x̂
2
2

∂θ

∂x̂2

]
= γ2 ∂

2θ

∂x̂2
2

+ O(γ4). (3.8)

In an inner boundary layer of thickness (ωPe)−1/2, the first and third terms of (3.8)
will be in balance. We shall seek asymptotic solutions in the outer and inner regions
in the form of a power series in γ. Typically, these solutions would be linked by the
method of matched asymptotic solutions. However, we shall only look at the form of
the solutions in the outer and inner regions and the matching conditions between the
two solutions in order to extract useful order estimates. A full asymptotically matched
solution will not be attempted becuse of the difficulty in applying a matching condition
at the separation point p− (at x1 = −1), linking the solution in the thermal boundary
layer with the thermal wake along the unstable manifold.

With θ = θ̂(τ, x1, x̂2) denoting the outer representation, we substitute the ansatz

θ̂ =

∞∑
n=0

γnθ̂n, (3.9)

in (3.8) and on equating like powers of γ, we obtain for the first five terms:

∂θ̂n

∂τ
=


0, n = 0, 1

Ξ(n, x1, x̂2), n = 2, 3

Ξ(n, x1, x̂2)− 3ωx̂2
2(1 + x1β sin τ)

∂θ̂0

∂x1

+ ωx̂2
3β sin(τ)

∂θ̂0

∂x̂2

, n = 4

where

Ξ(n, x1, x̂2) =
∂2θ̂(n−2)

∂x̂2
2
− (x1

2 − 1)x̂2

∂θ̂(n−2)

∂x1

+ x1x̂2
2 ∂θ̂(n−2)

∂x̂2

.

We expect steady-state oscillations in the temperature field in the near-wall thermal
boundary layer owing to the steady-state oscillations in the local wall shear (Pedley
1972); this is confirmed by the numerically obtained temperature time-series in
figure 11(a). Thus we cannot allow secular terms in the temperature field that would
grow indefinitely with time. Inspecting the first five terms in the expansion given
above, we find that no time-periodic solutions are possible for the first four terms of
(3.9), and therefore require

∂θ̂n

∂τ
= 0, n < 4.

Then the time-dependent component of (3.9) is (at most) O(γ4) which, in terms of
the Péclet number, is O(Pe−2/3). We note that for the Péclet number at which the
temperature time-series of figure 11(a) was obtained, Pe−1/3 = 0.03; since figure 11(a)
was obtained at (x1, x2) = (0, 0.04), the result of figure 11(a) can be considered to be
representative of the temperature field in the outer region. We also confirm the weak
Pe−2/3 scaling of the steady-state temperature oscillations by repeating the numerical
computation of figure 11(a) at two different Péclet numbers, and the results are
displayed in figure 11(b).

We mention in passing that the asymptotic analysis, of course, does not apply
away from the wall and the asymptotic scalar distribution is not necessarily time-
independent, even to dominant order. Time-series obtained at a point in the bubble
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Figure 11. Time-series using the Wiener bundle method, at (x1, x2) = (0, 0.04), for β = 0.6,
ω = 0.72 and (a) Pe = 2.5× 104; (b) Pe = 125 (i), Pe = 103 (ii).
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Figure 12. Time-series using the Wiener bundle method, at (x1, x2) = (−0.547, 0.321) ∈Wu
β ,

for β = 0.6, ω = 0.72, Pe = 2.5× 104.

region away from the wall (see figure 12) shows large O(1) time-periodic fluctuations
about an asymptotic mean value, in sharp contrast to figure 11(a).

To dominant order, the instantaneous wall-integrated flux is given by

Jw(t) = Pe−2/3

∫ 1.5

−1.5

∂θ

∂x̂2

∣∣∣
x̂2→0

dx1.

It can be shown (Ghosh 1994) that the contribution to the instantaneous wall-
integrated flux from the thermal boundary layer region in the vicinity of the separation
point p− can be ignored to dominant order, and therefore does not appear in the
expression above.

To obtain estimates of the heat flux from the wall, it is essential to consider the
inner region. Let ξ = γ−1x̂2 be a suitably scaled inner variable. With θ = Θ(τ, x1, ξ)
denoting the inner representation, we substitute the ansatz

Θ =

∞∑
n=0

γnΘn,

in (3.8) and on equating like powers of γ, we obtain a transient diffusion equation for
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the first two terms:
∂Θn

∂τ
− ∂2Θn

∂ξ2
= 0, n = 0, 1. (3.10)

‘Diffusing solutions’ of (3.10), which are solutions in terms of the similarity variable
ξ2/τ, are ruled out since they apply only to the transient state and not the asymp-
totic steady-state oscillations that are of interest here. Then, a consideration of the
asymptotic matching condition at ξ →∞ yields easily

Θ0 = 1, Θ1 = Cξ, (3.11)

where use was made of the fact that θ̂0(x1, x̂2 → 0) must be of the form 1 + a0h(β)
with h(β) → 0 as β → 0, since the outer solution must approach the steady solution
at all x̂2 and γ as the amplitude β of the time-periodic perturbation approaches zero;
rejecting the diffusing solution at zeroth order requires a0 = 0, while the constant C
in (3.11) is obtained from the asymptotic matching at ξ →∞ (see Pedley 1972). From
(3.11) we obtain easily that the wall-integrated flux is O(Pe−2/3), identical to the steady
case. The marginal enhancement observed in figure 10(b) is interpreted as a weak
second-order effect. We also note that the asymptotic instantaneous wall-integrated
flux, Jw(t), is time-independent to dominant order, which accounts for the observed
feature that the asymptotic time-averaged wall integrated flux, 〈Jw(t)〉T , is largely
insensitive to the averaging period T.

In physical terms, the introduction of a time-periodic perturbation to the advection
field can cause an enhancement in the heat flux from the wall in two ways: one
due to the oscillating wall shear, and another due to the chaotic advection in the
bubble region above the thermal boundary layer, which causes the destruction of
the separatrix boundary layer and the constant temperature recirculation bubble,
allowing heat to escape more rapidly from the boundary layer into the overlying
bubble region. But as the analysis above shows, neither of these is a dominant order
effect. Their influence at lower orders is not captured by our analysis above.

3.5. Case with oscillating points of zero shear stress

Results obtained by Shariff et al. (1991) show that for two-dimensional time-periodic
incompressible flows adjacent to a plane no-slip boundary, the necessary condition
for a point on the no-slip boundary (x∗1, 0) to have a one-dimensional stable/unstable
manifold for the corresponding Poincaré map, with the manifold emanating with
non-zero slope, is the following:∫ T

0

∂u1

∂x2

(x1 = x∗1, x2 = 0)dt = 0, (3.12)

where x1 is the coordinate along the boundary, x2 is the coordinate normal to the
boundary, and u1 is the x1-component of the velocity field, i.e. the time-averaged
shear stress must vanish at the manifold emanation points. Here we point out its
consequences on the scalar distribution in the context of our advection-diffusion
problem.

To this end, we first set-up a chaotic advection field which has oscillating points
of zero shear stress on the no-slip boundary. The time-periodic velocity field of (2.8)
has two points of zero shear stress on the no-slip boundary at all times, given by
x1 = ±1, i.e. the points of zero shear stress are independent of time t. The point (−1, 0)
corresponds to the separation point p−, while (+1, 0) corresponds to the attachment

point p+. For the corresponding Poincaré map P φ̄
β , p− and p+ are the only points on
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the no-slip boundary having one-dimensional unstable/stable manifolds, irrespective
of the cross-section φ̄. Consider now a time-periodic perturbation of (2.5) that not
only generates chaotic particle trajectories in the bubble region but also creates two
points of zero shear stress on the no-slip boundary that are not time-independent,
but instead oscillate periodically about x1 = ±1. This is achieved easily by adding an
appropriate perturbation term to (2.3); the boundary vorticity in the time-dependent
flow is made to vary according to the equation

w(x2 = 0) ≡ −∂u1

∂x2

∣∣∣∣
x2=0

= −K(x2
1 − x2

s + βx1xs sin(ωt)).

The appropriately non-dimensionalized velocity field, truncated again to third-order,
is given by

u1 = −x2 + 3x2
2 + x2

1x2 − 2
3
x3

2 + βx1x2 sin(ωt),

u2 = −x1x
2
2 −

β

2
x2

2 sin(ωt),

 (3.13)

which is again an asymptotically exact solution of the Navier–Stokes and continuity
equations close to the origin of the expansion. The points of zero shear stress on the
no-slip boundary (x1, 0) are now given by

x1 = ±1− β

2
sin(ωt) + O(β2).

However, applying Shariff et al.’s result of (3.12), for the Poincaré map P
φ̄
β corre-

sponding to the velocity field of (3.13) the only points on the no-slip boundary (x∗1, 0)
having a one-dimensional stable/unstable manifold are located at x∗1 = ±1. Notice
that the necessary condition of (3.12) is independent of the cross-section or phase φ̄ of

the Poincaré map P φ̄
β , which implies that though the points of zero shear stress on the

no-slip boundary oscillate in a time-periodic manner, the manifold emanation points

are time-independent and remain the same for every P φ̄
β , irrespective of φ̄. Therefore,

while the unstable manifold Wu
β (φ̄) changes structure with φ̄, the manifold emanation

point or separation point remains stationary at the wall. This property becomes trans-
parent from numerical simulation results of figure 13(a–c) for the scalar distribution
computed at times that are not integral multiples of the period T = 2π/ω of the time-
periodic velocity field of (3.13) and therefore correspond to different cross-sections φ̄.
Thus, despite the fact that (3.13) and (2.8) are very different chaotic advection fields,
the scalar distributions for the associated advection-diffusion problem at large Péclet
numbers share the same qualitative features owing to the similarity in the underlying
geometrical structures in the two cases. This further reinforces the importance of the
underlying geometrical structures in determining the scalar distribution in chaotic
advection fields.

The asymptotic time-averaged wall-integrated flux 〈Jw(t)〉T again shows weak en-
hancement over the steady-advection case, which is not surprising following our
discussion in § 3.4. Temperature time-series in the thermal boundary layer indicate
weak time-dependence as before, attributed to the absence of time-dependent struc-
tures in the near-wall region in the sense of oscillating manifold emanation points. The
absence of such time-dependent structures is the likely cause of the lack of enhanced
transport usually associated with turbulent flows. Moreover, it should be clear from
equation (3.12) that every time-periodic two-dimensional velocity field will have time-
independent manifold emanation points at the no-slip boundary. Finally, we note that
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Figure 13. Scalar field corresponding to the chaotic advection field of (3.13), for β = 0.4, ω = 0.65,
Pe = 2.5× 104, at (a) t = 5.25T , (b) t = 5.75T , (c) t = 6T , T = 2π/ω.

it might be possible to generate time-dependent structures in the near-wall region for
two-dimensional chaotic advection fields with more complicated time-dependences, in
particular quasi-periodic time-dependence.

3.6. Impact of changing bubble size

The size of the steady separation bubble can be varied by varying the coefficient A122

in the time-independent velocity field of (2.4); A122 must lie within the appropriate
limits given in § 2. Introducing a time-periodic perturbation as in (2.6) and truncating
the series expansion to third-order gives a chaotic advection field identical to (2.8)
with time-independent component fu(x), expressed now in terms of the unspecified
coefficient A122,

fu ≡ (fu1 , f
u
2) =

(
−x2 +

A122

Kxs
x2

2 + x2
1x2 − 2

3
x3

2,−x1x
2
2

)
. (3.14)
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Figure 14. Scalar field corresponding to the chaotic advection field with time-independent compo-
nent (3.14), for A122 = 4.5Kxs, with β = 0.5, ω = 0.5, Pe = 2.5 × 104, at (a) t = 10T , (b) t = 20T ,
T = 2π/ω.
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Figure 15. Scalar field corresponding to the chaotic advection field with time-independent compo-
nent (3.14), for A122 = 2Kxs, with β = 0.5, ω = 0.5, Pe = 2.5 × 104, at (a) t = 10T , (b) t = 20T ,
T = 2π/ω.

We consider here the effect of variations in the coefficient A122 on the chaotic
advection field above and, consequently, on the scalar distribution in the associated
advection-diffusion problem.

Thus far we have presented numerical simulation results for A122 = 3Kxs. Time-
dependent scalar distributions are now computed at two different values of the
coefficient A122: in figure 14(a, b), scalar distributions are obtained for A122 = 4.5Kxs,
while in figure 15(a, b) the scalar distributions are obtained for A122 = 2Kxs, with the
perturbation parameters β, ω and the Péclet number Pe identical in the two cases.
Evidently, there is a sharp qualitative difference in the scalar distributions for the
two cases. It is observed that at smaller A122, the unstable manifold Wu

β (φ̄) plays a
more dominant organizing role in the distribution of the passive scalar. Moreover,
the distributions are more localized and non-uniform at smaller A122. Following our
arguments in § 3.4, it is not surprising that the wall-integrated flux is observed to be
largely insensitive to variations in A122, as long as A122 is not too large.
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While for β = 0, i.e. for steady advection, the value of A122 determines the size
of the separation bubble, for β 6= 0 but β small, A122 determines the location of the
heteroclinic tangle formed by the intersections of the stable and unstable manifolds,

Ws
β(φ̄) and Wu

β (φ̄) respectively, of the Poincaré map P
φ̄
β corresponding to the time-

periodic chaotic advection field. In fact, it is a simple consequence of Gronwall’s lemma

(e.g. see Wiggins 1990) that trajectories under P φ̄
β with initial position on Wu

β (φ̄) within
O(β) of the separation point p−, must remain O(β) close to the unperturbed separatrix
ψh for small β, until they enter a small neighbourhood of the attachment point p+.
Then, since A122 determines the shape of the separatrix ψh, it strongly influences
the shape of the unstable manifold Wu

β (φ̄). Moreover, variations in A122 cause sharp
variations in the stretching properties of the chaotic advection field, evidence of which
will be presented later; the lower the value of A122 (A122 > (8/3)1/2Kxs), the greater the
stretching and contraction rates – precise definitions are given in § 5 – in the chaotic
bubble region. These two factors account for vastly different scalar distributions at
different A122. To what extent these advection-diffusion phenomena at small scalar
diffusivity can be understood in terms of the dynamics under (2.8) is the content of
the following sections.

4. The zero-diffusivity solution and its relation to the solution at small
scalar diffusivity

Given some initial distribution of a scalar field one can construct a zero-diffusivity
solution, also called the frozen-field solution, at any t > 0 by treating θ as a material
invariant. It might be expected that the effect of small scalar diffusion is to smooth
out any fine-scale structure in the zero-diffusivity solution. Recent work of Klapper
(1992 a) has contributed strongly towards this description. If small scalar diffusion
does no more than smooth out the fine variations in the zero-diffusivity solution,
the distribution of the scalar field at small scalar diffusivity should retain the gross
features of the zero-diffusivity solution. However, our problem is complicated by the
fact that the zero-diffusivity solution, i.e. the solution of (3.1) at Pe = ∞, is trivially
zero over the entire domain of the flow. We therefore interpret the zero-diffusivity
solution in the following sense: for Pe → ∞, Pe however large, there is always
a thermal boundary layer near the active portion of the wall which is diffusively
dominant and where diffusion may not be ignored. For t = t0 sufficiently small, a
solution in the boundary layer is easily obtained, which is used as an ‘initial profile’,
θ(x, t = t0), to obtain a ‘zero-diffusivity’ solution in the rest of the domain at t > t0 by
setting the scalar diffusivity to be exactly zero and treating θ as a material invariant
for all t > t0. The construction is artificial, but it proves to be a useful artifice in
understanding not only the role of the unstable manifold as a organizing structure
but also the role of small scalar diffusion as a local smoothing of fine-scale structure
in the frozen field.

In the boundary layer at the wall, for t sufficiently small the normal coordinate
x2 < O(1) for all x1. If the lateral coordinate x1 is O(1), the advective term in (3.1),
u ·∇θ, is O(x2), and therefore there is a time t sufficiently small such that the advective
term cannot match ∂θ/∂t and will not contribute to dominant order. Moreover,
for x2 � x1, diffusion in the normal direction dominates over diffusion parallel to
the wall. Hence, at small t the dominant balance argument is straightforward: the
transient term ∂θ/∂t must be balanced by diffusion normal to the wall. In physical
terms, for small t, in particular t so small that advection is negligible in comparison to
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transverse diffusion over a narrow boundary layer at the wall, the advection-diffusion
equation in the boundary layer must reduce to a simple transient diffusion equation
with solution θ(x1, x2, t) independent of the lateral coordinate x1. We rescale time,
t → Pe−αt, α > 0. Balancing appropriate terms in (3.1) gives x2 = O(Pe−(α+1)/2).
Rescaling the normal coordinate in the near-wall boundary layer, x2 → Pe−(α+1)/2x2

gives a simple transient diffusion equation, to dominant order:

∂θ

∂t
=
∂2θ

∂x2
2

,

with initial and boundary conditions

θ(t→ 0) = 0,

θ(x2 → 0) = 1,

θ(x2 →∞) = 0,

which has the familiar error function solution, expressed now in the unscaled coordi-
nates,

θ(x1, x2, t) = 1− 2

π1/2

∫ Pe1/2x2

2t1/2

0

e−s
2

ds. (4.1)

The exact scaling factor α remains undetermined. The dominant balance argument is
not expected to hold near the separation point p− where advection is not dominantly
parallel to the wall. But, for large Pe, this advection-diffusion regime will be of
negligible size and may be ignored. Comparison with the exact Wiener bundle solution
for β = 0.6, ω = 0.72, and Pe = 2.5 × 104 along the centreline (x1 = 0, x2 > 0) at
several t (see figure 16) shows that the error function solution of (4.1) tracks the
time-evolution of the scalar field in the boundary layer all the way up to about
t ≈ 10, but deteriorates rapidly at larger times.

Using the error function solution of (4.1) for Pe = 2.5× 104 and t = t0 sufficiently
small as the ‘initial distribution’ θ(x, t = t0), the ‘zero-diffusivity’ solution is obtained
at several t > t0, excluding of course the thin near-wall boundary-layer region (see
figures 17, 18). Henceforth, it will be understood that by ‘zero-diffusivity’ solution we
mean θ(x, t > t0) obtained using the ‘initial distribution’ described above. It is evident
from figures 17 and 18 that the initial distribution, which is confined to the near-wall
region, is wrapped around Wu

β (φ̄) as time progresses; as usual the numerical results
are obtained at t = NT for several N, i.e. at times that are integral multiples of the
period T of the velocity field, so that φ̄ = 0 and comparisons can be made with Wu

β

of figure 2. This result can be understood in simple terms by examining the dynamics
of points in the near-wall region under forward iterations of the Poincaré map Pβ .
Consider the heteroclinic tangle formed by the intersections of Ws

β and Wu
β . If they

intersect once, they must intersect a countably infinite number of times since their
intersection points, called heteroclinic points (see Wiggins 1992), asymptote to the
attachment point p+ in forward time and to the separation point p− in backward
time, and therefore constitute a doubly asymptotic set. Moreover, if they intersect
transversely, there exists a countable infinity of transverse heteroclinic points. This is
due to the fact that transversal intersections are preserved under diffeomorphisms and
Pβ , being the time-T map derived from a smooth flow, is a diffeomorphism. Hence
the presence of the plane wall and the accumulation of transverse heteroclinic points
close to p−, in terms of arclength along Wu

β , forces segments of Ws
β to accumulate at
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Figure 16. Wiener bundle solutions (symbols) at several points along the centreline (x1 = 0, x2 > 0)
at several times and for β = 0.6, ω = 0.72, Pe = 2.5×104, are compared to the small-time analytical
solution of (4.1) at the same Pe (solid lines). (a) t = T/2, (b) t = T , (c) t = 2T , T = 2π/ω.

the wall, giving rise to the familiar trellis-type structure studied originally by Poincaré
(e.g. see Easton 1986). This is demonstrated by the heteroclinic tangle over the wall,
obtained in figure 19 for β = 0.6, ω = 0.72.

Integration errors near the no-slip boundary makes resolution of the tangle dif-
ficult, but the afore-mentioned trellis-type structure of the tangle is clearly evident.
Now consider the countable infinity of transverse heteroclinic points pi, i ∈ Z , that
accumulate on p− in the sense described above. As segments of Ws

β densely fill out
the near-wall region Rw ≡ (−1.5, 1 − ε1) × (0, ε2), 0 < ε1, ε2 � 1, ε1 → 0 as ε2 → 0,
every open neighbourhood of any point in Rw has points lying on a segment of Ws

β

or on the stable manifold through some pi, where the stable manifold through pi is
the set of points that converge asymptotically to the trajectory of pi under forward
iterations of Pβ . Since points on Ws

β converge asymptotically in forward time, and the
pi are mapped to transverse heteroclinic points under Pβ , points in Rw are swept into
a thin neighbourhood of Wu

β under forward iterations of Pβ , which accounts for the
nature of the zero-diffusivity solution observed in figures 17, 18. Moreover, because of
the asymptotic convergence of points on Ws

β , the zero-diffusivity solution will have a
steep gradient in the local stable direction which, for a transverse heteroclinic point, is
the direction of the tangent to Ws

β at that point and is complementary to the tangent
direction of Wu

β at that point. This is verified by extracting from figure 17 the scalar
distribution in directions tangent and normal to Wu

β at a point p ∈ Wu
β , i.e. along

Tp(W
u
β ) and Np(W

u
β ), which are displayed in figure 20.

We make a slight digression to address a technical point. While figure 19 does supply
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Figure 19. Heteroclinic tangle near the wall for β = 0.6, ω = 0.72.
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Figure 20. Distribution of the scalar field at t = 10T in the zero-diffusivity solution of figure 17
along (a) Tp(W

u
β ), (b) Np(W

u
β ), p = (−0.547, 0.321) ∈Wu

β . The point p is plotted in figure 2 (a).

numerical evidence of transversal intersections of Ws
β and Wu

β , analytical verification
can also be obtained using the Melnikov function (Wiggins 1992) which gives a signed
measure of the distance between Ws

β(φ̄) and Wu
β (φ̄). Assuming smoothness of Ws

β(φ̄)

and Wu
β (φ̄), Melnikov’s theory can be used to obtain the following Melnikov function

for our problem, including complications due to the non-hyperbolicity of p− and p+

(e.g. see Camassa & Wiggins 1991 and Ghosh 1994):

M(τ) = A(ω) sin(ωτ),

where τ parametrizes the heteroclinic connection ψh, and

A(ω) =

∫ +∞

−∞
(fu1g

u
2 − fu2gu1)(xh(t)) cos(ωt)dt,

where fu ≡ (fu1 , f
u
2) and gu ≡ (gu1 , g

u
2) are from the velocity field of (2.8), and xh(t) is

the heteroclinic orbit. For A(ω) 6= 0, it is a straightforward conclusion that Ws
β and

Wu
β do intersect transversely (Wiggins 1990). The variation of A(ω) with ω is shown

in figure 21. We also note that the perturbation frequency ω was chosen to be 0.72
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Figure 21. Variation of amplitude A of the Melnikov function with perturbation frequency ω.

in our computations since A(ω) is maximum at ω = 0.72; it is desirable to have large
A(ω) since the width of the chaotic layer increases with A(ω) (Ghosh, Chang & Sen
1992). Moreover, it is evident from figure 21 that the distance between the stable and
unstable manifolds falls rapidly as ω is increased beyond 0.72 and for such ω, Ws

β

and Wu
β do not sweep out the entire bubble region; this is certainly true for ω = 2.0.

Thus the zero-diffusivity solution at t > t0 pulls the boundary layer distribution at
t = t0 into a narrow distribution along the unstable manifold of p−, Wu

β (φ̄), where

the variation of the scalar field along Wu
β (φ̄) is much smaller than in transverse

directions. The physical picture arising from comparing figures 17(a, b), 18(a, b) with
figures 3(a, b), 4(a, b) respectively is that the zero-diffusivity solution creates fine-scale
structure that is confined to the vicinity of Wu

β (φ̄) and small scalar diffusion only
smooths out the fine variations, thus allowing the unstable manifold to continue to be
the dominant organizing structure everywhere except in a narrow diffusively-dominant
near-wall boundary layer. In the following section we develop an understanding of
this qualitative picture using recent results (Klapper 1992 a) based on the shadowing
theory of chaotic hyperbolic sets.

5. Application of shadowing theory to the small diffusivity problem
Klapper (1992 a) has shown how shadowing theory from deterministic dynamical

systems theory can be used to study the small diffusivity problem. We apply his
approach to our problem, where it enables us to understand:

(1) the role of diffusion as a smoothing of the zero-diffusivity solution at small
diffusivity,

(2) the approach of the scalar field to an asymptotic state over an intermediate
time scale,

(3) the observed increase in non-uniformity of the scalar field as the perturbation
is increased,

(4) the role of the unstable manifold of p− as the geometric structure in the flow
governing the spatial distribution of the scalar field.

We now describe the method. We consider a discrete-time formulation in which
instantaneous advection, given by the Poincaré map P

φ̄
β , is alternated with pulses of

diffusion over time T . Therefore, a diffusive tracer located at x0 at initial time t0 is
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advanced according to

xn+1 = f(xn) + ρT , n = 0, 1, . . . , (5.1)

with ρT ≡ (ηT , ξT ), where ηT , ξT are Gaussianly distributed random variables, each

with mean zero and variance 2T/Pe, diffeomorphism f ≡ P
φ̄
β , and the cross-section

φ̄ is determined by φ̄ = ωt0 (mod 2π).

The shadowing lemma applies to the deterministic part of (5.1), i.e. the map f.
Strictly speaking, it only applies in a region where every point has a one-dimensional
exponentially attracting direction and a one-dimensional exponentially expanding
direction, and the angle between these two directions is bounded away from zero.
Regions having this property are called hyperbolic sets, and we will denote such a
region by Λ. The shadowing lemma (Bowen 1975) states that for each δ > 0 there
is an ε > 0, such that every trajectory {xi}mi=n in Λ satisfying |xi+1 − f(xi)| < ε for
all n 6 i 6 m (called an ε-pseudo-orbit) is δ-traced by an exact trajectory {yi}mi=n
in Λ (called the shadowing trajectory), i.e. yi+1 = f(yi) and |xi − yi| 6 δ for all
n 6 i 6 m, where n = −∞ and m = +∞ is permitted. For Λ ⊂ R2, | · | can be
taken to be the standard Euclidean norm on the plane. If the shadowing lemma can
be applied (a question that we will address more completely after we describe the
method), the picture we have in mind is that the ε-pseudo-orbits represent diffusive
or Wiener trajectories. Then the shadowing lemma implies that such trajectories are
approximated by deterministic trajectories.

In what follows, we assume that the dynamics at every point can indeed be
decomposed into a stable and unstable direction. Consider then a diffusive tracer
located at xN and travelling backwards under (5.1), i.e.

xn−1 = f−1(xn) + ρT , n ∈ [1, N]. (5.2)

Therefore (5.2) generates a bundle or cloud of Wiener trajectories, each of which
starts at a random ‘Wiener initial point’ x0 at iteration zero or t = t0 and arrives
at the fixed non-random point xN in N forward iterations. Now, every Wiener
trajectory generated by (5.2) has a noisy deviate ρT at each iterate which is typically
O((T/Pe)1/2). Because of the Gaussian tail, ρT can become unbounded in some
realizations, but the probability of such an event can be made arbitrarily small for
any finite number of realizations by taking Pe large enough and thus forcing the
variance of the noisy deviates to be as small as desired. More precisely, given an
ε > 0, choosing Pe sufficiently large ensures that the sample paths of (5.2), with
probability arbitrarily close to unity, have noisy deviates that are bounded from
above by ε at every time-step over finite time-intervals. Therefore, at large Pe almost
all Wiener trajectories {xn}0n=N generated by (5.2) are ε-pseudo-orbits, and these will
be shadowed as long as the trajectory is confined to regions of the flow where the
shadowing property holds. Notice the difficulty in extending the argument to infinite
times: as N → ∞, every Wiener trajectory will, with probability one, experience a
large noise event even at arbitrarily large Pe and cannot be shadowed. However,
it is irrelevant to our problem since we are interested in only finite-time results.
Recall from (3.5) that computing the Wiener bundle solution for the scalar value at
the point xN at time t requires taking an expectation over this bundle of Wiener
trajectories. Since the exact distribution of Wiener trajectories is difficult to obtain in
an arbitrary flow, the method might seem to offer little additional insight. However,
chaotic flows with the shadowing property and the associated hyperbolic structure
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provide a means of representing the distribution of Wiener trajectories in terms of
exact shadow trajectories in a convenient way (Klapper 1992 a).

Consider the Wiener trajectory {xn}0n=N generated using (5.2). The first noisy back-
ward iterate of xN is O((T/Pe)1/2) close to f−1(xN). In the next backward iterate,
the component of xN−1 in the local unstable direction of f−1(xN) is contracted ex-
ponentially under f−1 and therefore xN−2 remains O((T/Pe)1/2) close to the stable
manifold of f−2(xN). Continuing in this way, the Nth noisy backward iterate of
xN , x0 is O((T/Pe)1/2) close to the stable manifold through f−N(xN), which is also
the Nth preimage of the stable manifold through xN . Denoting the stable manifold
through xN as Ws(xN), the hyperbolic structure of the dynamics pulls the cloud
of Wiener trajectories released at xN into an O((T/Pe)1/2) neighbourhood (which
can be imagined as a tube or sausage of thickness O((T/Pe)1/2) ) of f−N(Ws(xN))
in N backward time-steps. The observation is crucial and was first made by A. D.
Gilbert (see Klapper 1992 b). From (3.5), the Wiener bundle solution at xN at time
t = NT + t0 is therefore an appropriately weighted average of the initial field distri-
bution θ(x, t0) in an O((T/Pe)1/2) neighbourhood of the Nth preimage of the stable
manifold through xN . If θ(x, t0) is continuous, assuming all Wiener initial points, i.e.
the x0, lie on f−N(Ws(xN)) causes an error of O((T/Pe)1/2) in θ(xN, t = NT + t0), and
can be ignored. Thus the assumed hyperbolic structure of the dynamics leads to an
important dimensional reduction in the problem, since obtaining the Wiener bundle
average of (3.5) now requires computing the distribution of Wiener initial points in
terms of arclength along the one-dimensional manifold f−N(Ws(xN)). Note, however,
that the variance of this distribution can be O(1); due to the fast (asymptotically
exponential) convergence of points on the stable manifold in forward time, the noisy
backward iterates xN−n can quickly move an O(1) distance away from f−n(xN) in
terms of arclength along f−n(Ws(xN)), even for very large Pe. Therefore, the aver-
aging might have to be carried out over a O(1) length of f−N(Ws(xN)). But, since
f−N(Ws(xN)) is not an embedding in R2 it is not a submanifold of R2 and can be a
very complicated geometric object, in which case no major simplification is achieved.
The shadowing property offers a way around this problem. From the shadowing
lemma and our discussion above, almost every Wiener trajectory is δ-shadowed by
an exact trajectory and δ can be chosen arbitrarily small provided Pe is sufficiently
large. A Wiener trajectory {xn}0n=N and the corresponding exact shadow trajectory

{yn}0n=N will pick up the same scalar value to O(δ) and therefore the contribution
to the Wiener bundle average of (3.5) by θ(x0, t0) can be replaced by θ(y0, t0) with
asymptotically small error. It should be clear that the y0 must lie on f−N(Ws(xN));
otherwise, since the component in the unstable direction is exponentially expanded
in forward time, forward iterates of y0 (under the deterministic map, f ) will move
quickly away from the preimages of the stable manifold through xN and cannot
remain close to {xn}0n=N . The advantage gained is the following: the distribution of
Wiener initial points over f−N(Ws(xN)) can be mapped back to Ws(xN) under fN ,
since the Wiener trajectories can be replaced by exact trajectories of fN to O(δ),
yielding the appropriate weighting law for averaging the zero-diffusivity solution over
Ws(xN). Since points on f−N(Ws(xN)) converge exponentially under fN as N → ∞,
the variance of the distribution over f−N(Ws(xN)) is also asymptotically exponen-
tially contracted under fN , which is an important simplification since Ws(xN) can be
replaced by a straight line Es(xN) in the local stable direction at xN . Therefore, the
Wiener bundle average of the initial field θ(x, t0) over an O((T/Pe)1/2) neighbour-
hood of f−N(Ws(xN)) is asymptotically replaced by a properly weighted average of
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the zero-diffusivity solution over Es(xN) in the Wiener bundle solution of (3.5) at xN

at t = NT + t0. Klapper (1992 a) showed that the asymptotic (Pe →∞) weighting law
for averaging the zero-diffusivity solution over Es(xN) is Gaussian, with zero mean
and variance

σ2
N =

2T

Pe

N∑
n=1

(
1

λn

)2

, (5.3)

where λn > 1 is the expansion factor of f−n along the local stable direction at xN .
The λn are easily expressed in terms of the local expansion rates at every iterate. Let
fn be the restriction of f−1 to Ws(f−n+1(xN)) and introduce Fn = fn ◦ fn−1 ◦ · · · ◦ f1;
Fn maps Ws(xN) onto Ws(f−n(xN)). Then λn is simply

λn ≡ dFn

∣∣∣
xN

= dfn

∣∣∣
f−n+1(xN )

◦ dfn−1

∣∣∣
f−(n−1)+1(xN )

◦ · · · ◦ df1

∣∣∣
xN
,

= βn ◦ βn−1 ◦ · · · ◦ β1,

where βi = dfi

∣∣∣
f−i+1(xN )

is the expansion factor of f−1 in the local stable direction of

f−i+1(xN).
Finally, we discuss conditions under which the shadowing lemma applies. The

result would appear to be useful only in the special case of uniformly hyperbolic or
everywhere hyperbolic (Farmer & Sidorowich 1991) dynamical systems (also called
Anosov dynamical systems) in which at each point the dynamics can be decomposed
into local stable and unstable directions and the stable and unstable manifolds always
intersect transversely, i.e. there are no homoclinic tangencies (Farmer & Sidorowich
1991). However, work of Klapper (1992 a) has indicated that making the assumption
that the shadowing property holds in non-uniformly hyperbolic systems such as ours
can lead to useful insights into the small-diffusivity scalar advection-diffusion problem.
Our work also confirms this hope, and we support this with numerical simulations
that enable us to determine when shadowing breaks down (i.e. when homoclinic
tangencies occur). A detailed numerical study of this for our problem can be found
in the thesis of Ghosh (1994).

5.1. Comparison of shadowing and the Wiener bundle methods

In figure 22(a) 104 Wiener trajectories starting at p1 = (0.25, 0.455) are generated using
(5.2) by advancing backward in time up to a length of time 5T , for β = 0.6, ω = 0.72,
and Pe = 106, to obtain the distribution of Wiener initial points in the domain of
interest, which is the bubble region or the flow region above the active portion of the
wall. An equal number of points is distributed uniformly along the stable direction
at p1 up to a length 3σ on either side of p1, where σ is the standard deviation of
the Gaussianly distributed shadowing trajectories, computed for the same parameter
values as above, using (5.3). These are integrated backwards up to a length of time 5T
using the velocity field of (2.8) to obtain the preimage of the stable manifold through
p1, and is shown in figure 22(b). It is evident that most of the mass of the distribution
of Wiener initial points is confined to a small neighbourhood of the preimage of the
stable manifold through p1. These results illustrate the usefulness of the shadowing
property.

5.2. Smoothing of the zero-diffusivity solution by diffusion at small scalar diffusivity

Due to the hyperbolic character of the dynamics in chaotic flows, the fine-scale
direction (or the scalar gradient) at a point in the zero-diffusivity solution will be,
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Figure 22. (a) Distribution of 104 Wiener initial points that arrive at the point p1 = (0.25, 0.455) in
time t = 5T . Relevant parameter values are β = 0.6, ω = 0.72, Pe = 106, and T = 2π/ω. (b) 104

points lined up along the stable direction at p1 = (0.25, 0.455) up to a length 3σ on either side of p1

and integrated backwards for a length of time 5T , where σ = 0.0015 and is computed using (5.3)
for parameter values identical to (a).

roughly speaking, in the local stable direction (Klapper 1992 a). For a point p on
the unstable manifold of p−, p ∈ Wu

β (φ̄), the local unstable direction is Tp(W
u
β (φ̄)),

while the local stable direction is in general complementary to Tp(W
u
β (φ̄)), unless p

is a point of homoclinic tangency; not surprisingly, scalar profiles extracted along
Tp(W

u
β ) and in the direction orthogonal to Tp(W

u
β ) are strikingly different (see figure

20). Therefore, as long as the shadowing property holds, adding small scalar diffusion
will smooth fine-scale structure in the zero-diffusivity solution around p ∈ Wu

β (φ̄).

Since the zero-diffusivity distribution is almost entirely confined along Wu
β (φ̄), adding

small scalar diffusion only smears out the zero-diffusivity solution about Wu
β (φ̄).

5.3. Further considerations of the zero-diffusivity solution

Before we can apply shadowing theory to determine the effects of small diffusivity,
we need to continue our analysis and characterization of the zero-diffusivity solution
begun in § 4. From both theoretical arguments and numerical evidence presented
in § 4, it is clear that the zero-diffusivity solution away from the wall is confined
entirely to the vicinity of the unstable manifold of p− , Wu

β , and therefore it will be
sufficient to consider the dynamics of points in the vicinity of Wu

β even for the full

advection-diffusion problem. Let R̄w = (−1.5, 1) × (0, ε1), where ε1 = O(Pe−(α+1)/2).
Therefore R̄w is the thin near-wall region in which the ‘initial’ distribution θ(x, t0) is
non-zero. Let θfr denote the zero-diffusivity or frozen-field solution. Consider a point

x in the vicinity of Wu
β , and let {xn}0n=N be the exact dynamical trajectory through x

under backward iterations of f, i.e. xN ≡ x. Then, θfr(x, t = NT + t0) 6= 0 if and only

if f−N(xN) ≡ x0 ∈ R̄w . Let x ∈ Ws(y), where y ∈ Wu
β , and let {yn}0n=N be the exact

dynamical trajectory through y under backward iterates of f, yN ≡ y. Moreover, let
N1 be defined such that for N > N1(ε1, y), |f−N(yN)− p−| < ε1, where recall that p−
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is the point of separation on the no-slip boundary. Then, if x0 ∈ R̄w ,

|x0 − y0| ' λN |x− y|, (5.4)

where the segment of Ws(y0) in R̄w is being approximated as a straight line and
|x − y| is assumed small; λN is the expansion factor of f−N along the local stable
direction of y ∈Wu

β . Therefore θfr(y, t = NT + t0) 6= 0 for all N > N1(ε1, y) and from
(5.4), the width of the zero-diffusivity solution at y will be O(1/λN), where by ‘width’
we mean the length over which the zero-diffusivity solution is non-zero in the local
stable direction at y.

Since the exact dynamical trajectory through a point on the unstable manifold
y ∈ Wu

β under backward iterations of f approaches the separation point p− and,
since p− is a non-hyperbolic stagnation point, the local expansion rates or βn along
the backward trajectory approach unity. In fact one can show that (Ghosh 1994)
(βN − 1) 6 ε0 for all N > N0 where N0 depends on ε0and y. A verification is provided
by numerical computations presented below (see figure 23).

Now, choosing ε0 very small, N0 > N1(ε1, y). Since for all N > N0

λN = (βN ◦ · · · ◦ βN0+1) ◦ λN0
,

it easily follows that

λN 6 (1 + ε0)
(N−N0)λN0

. (5.5)

Hence for all finite N > N0

λN0
6 λN 6 λN0

+ O(ε0).

There is therefore an intermediate time-scale specified by (N − N0) < O(1/ε0) over
which λN is infinitesimally close to λN0

and the width of the zero-diffusivity solution
at y is O(1/λN0

). We note that though the right-hand side of (5.5) diverges for N →∞,
this limit is irrelevant to our discussion since shadowing theory applies only on finite
time-scales. The zero-diffusivity solution is therefore O(1/λN1

) wide at y ∈ Wu
β when

it first appears at N = N1, but shrinks to an asymptotic width of O(1/λN0
) as N

increases beyond N0; of course since N0 > N1, λN0
> λN1

.
Owing to the non-hyperbolicity of p−, backward iterates of y approach p− very

slowly. Since backward iterates of x ∈Ws(y), O(1/λN0
) close to y, lie on segments of

f−N(Ws(y)) that are approximately parallel to the wall, their x2-coordinate varies very
slowly with N for N large. Again, this can be made precise by considering the local
representation of f−1 in the vicinity of any point on the no-slip boundary (Ghosh
1994). Therefore the backward iterates pick-up approximately the same scalar value
from the ‘initial’ distribution in R̄w . It is therefore concluded that on an intermediate
time-scale specified by N0 < N < N0 + O(1/ε0) the zero-diffusivity solution at y, and
in an O(1/λN0

) vicinity of y along the local stable direction at y, does not change
appreciably and can be said to have attained an asymptotic frozen-field distribution.

5.4. The small-diffusivity solution

From the viewpoint being considered here, the scalar value at a point in the bubble
region, in the presence of small scalar diffusion, depends on twin factors: firstly, the
zero-diffusivity distribution in the local stable direction at that point built-up by the
underlying chaotic advection discussed above and secondly, the local shape of the
asymptotic weighting function imposed by the smoothing process of scalar diffusion.
We consider now the latter.

It is clear that if the role of small scalar diffusion is a local smoothing of scalar
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gradient built-up in the zero-diffusivity solution, then the scalar value at a point
in the presence of small scalar diffusion will be zero if the zero-diffusivity solution
is also zero at that point and in a neighbourhood of that point; the size of this
neighbourhood will of course depend on the variance of the smoothing function, and
from (5.3) it is evident that for finite-times and large Pe, the size will be asymptotically
small.

In addition, for all N > N0, and for all x ∈Ws(y) such that x is O(1/λN0
) close to

y, the variance of the Gaussian weighting function of (5.3) satisfies

σ2
N 6

2T

Pe

[
N0∑
n=1

1

λ2
n

+

(
N −N0

λ2
N0

)]
,

where use has been made of the fact that λn is a non-decreasing function of n. For
most points in the bubble-region away from the wall λN0

is large. Therefore again,
for all finite N > N0,

σ2
N0
6 σ2

N 6 σ
2
N0

+ O

(
1

λ2
N0

)
,

i.e. σ2
N is infinitesimally close to σ2

N0
over the intermediate time-scale specified by

(N−N0) < O(1/λ2
N0

) and can be said to have attained an asymptotic value. It follows
then that the scalar distribution in the vicinity of y ∈ Wu

β , in the presence of small
scalar diffusion, will not change by any appreciable amount over an intermediate time-
scale and can be said to have attained an asymptotic distribution. In fact, at larger
perturbation amplitude β, the λn are larger (see figure 23) and the asymptotic values,
λN0

and σ2
N0

, are attained in shorter time, i.e. N0 decreases with β. This can explain the
numerically observed feature that the asymptotic scalar distribution is attained over a
shorter time-scale at larger perturbation amplitudes (compare figure 4 with figure 6).
Since the arguments hold for any cross-section φ̄ and any y ∈Wu

β (φ̄), the scalar field
in the entire bubble region will attain an asymptotic distribution. Moreover, at any
particular point the asymptotic scalar value will be time-periodic and will have the
same period as the period T of the advection field. Numerically obtained time-series
in figure 11(b) support this prediction.

5.5. Effect of local expansion rates

We consider next the effect of an increase in local expansion rates. Fix y ∈ Wu
β , let

y ≡ yN , N > N1, and suppose N1(ε1, y) is unchanged while the βn are increased.
Increasing βn results in larger λN , which means a ‘thinner’ zero-diffusivity distribution
at y. Further, from (5.3), larger λn yield smaller σ2

N , and hence the scalar distribution
at y, in the presence of scalar diffusion, is confined even closer to Wu

β . Therefore, as the
dynamics becomes more strongly hyperbolic, the zero-diffusivity solution is wrapped more
tightly around Wu

β and diffusion is less effective as a smoothing process. Together, they
account for the localized and non-uniform distributions obtained at larger perturbation
amplitudes. Of course we have no method for increasing βn without changing β, and
consequently changing the geometrical structure of Wu

β . We cannot then consider
a fixed y and examine the effect of increasing the βn. The only alternative is to
compare y, lying on Wu

β corresponding to different β, that have approximately the
same N1(ε1, y) for given ε1. To examine this situation, we choose three representative
y: y1 ∈ Wu

β=0.2, y2 ∈ Wu
β=0.6, y3 ∈ Wu

β=0.8, all with the same N1(ε1, y) for ε1 small. We

choose yi ≡ yNi , with N = 10, i = 1, 2, 3, i.e. we are considering t = 10T + t0. In
figure 23 we plot βn, n ∈ [1, 10], for all three cases; for given yi, βn is the expansion
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Figure 23. Local expansion rates, βn, at points on the exact trajectory {yni }
0
n=N , N = 10, i = 1, 2, 3,

and (a) yN1 = (0.55, 0.1649) ∈Wu
β=0.2, (b) yN2 = (0.5, 0.152 88) ∈Wu

β=0.6, (c) yN3 = (0.5, 0.1476) ∈Wu
β=0.8.

The perturbation frequency ω = 0.72 in all three cases. The points yN1 and yN2 are plotted in figures
2(b) and (a) respectively.

factor of f−1 in the local stable direction of f−n+1(yi). Evidently, at larger β, the βn
and consequently the λn are larger on account of the increased hyperbolicity of the
dynamics under the Poincaré map f ≡ Pβ . Not surprisingly the βn approach unity as
n increases and preimages of yi approach the non-hyperbolic separation point p−.

Another method for increasing on average the local expansion rates in the chaotic
bubble region is by modulating appropriately the coefficient A122 in the time-
independent component fu(x) of the velocity field, given by (3.14). That this is
indeed the case is shown by computing the local expansion rates or βn along the
backward dynamical trajectory (under f−1) through two representative points yA, yB
lying on the unstable manifolds WA, WB respectively, where WA ≡ Wu

β for β = 0.5,
ω = 0.5 and A122 = 4.5Kxs while WB ≡ Wu

β for β = 0.5, ω = 0.5 and A122 = 2Kxs,
and again N1(ε1, yA) ' N1(ε1, yB). Note that the perturbation parameters β, ω are
chosen to be identical to those in figures 14 and 15. The numerical results, displayed
in figure 24, show that the local expansion rates for A122 = 2Kxs are significantly
higher than that for A122 = 4.5Kxs. Lowering A122 not only increases the size of the
unperturbed bubble and consequently the size of the chaotic bubble region in the
associated time-periodically perturbed flow, but also increases on average the local
expansion rates. Then, following our discussion above, it is expected that the scalar
distribution would become more non-uniform and localized about Wu

β at lower A122.
This explains the observations made in § 3.6 regarding the sharp qualitative difference
between the scalar distributions of figures 14(a, b) and 15(a, b) corresponding to two
different values of the coefficient A122. We note that the perturbation parameters β,
ω were chosen in a manner such that for both values of A122 considered here, the
corresponding Poincaré maps have no KAM tori enclosing the core region of the
bubble. In fact, the surviving KAM tori are of negligible size in both cases. Further,
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Figure 24. Local expansion rates, βn, at points on the exact trajectory {ynA,B}
0
n=N , N = 10, and

(a) yNA = (0.50352, 0.11174) ∈ WA, (b) yNB = (−0.30030, 0.58182) ∈ WB . Case (a) corresponds to
A122 = 4.5Kxs and case (b) corresponds to A122 = 2Kxs, where A122 is the coefficient in (3.14). The
perturbation parameters are β = 0.5, ω = 0.5 in both cases.

the value of ω = 0.5 turns out to be close to the values of the perturbation frequency
at which the amplitude A(ω) of the Melnikov’s function (see § 4) is maximum in
either case; the value of ω at which A(ω) is maximum is of course different for
different A122, but are fortunately not widely separated for the two A122 considered
here.

5.6. Distribution along the unstable manifold

We consider finally how the distribution varies, at a fixed time t = NT + t0, as one
moves further away from p− in terms of arclength along Wu

β . As y ∈ Wu
β moves

away from p− in terms of arclength along Wu
β , N1(ε1, y) increases and the zero-

diffusivity solution attains a non-zero value at y at a later time. Consider two points
y1, y2 ∈ Wu

β , where y1 <l y2, i.e. y1 is closer to p− in terms of arclength along
Wu

β . Fix N > N1(ε1, y2) > N1(ε1, y1). Now, our numerical simulations show that the
local expansion rates or βn in general decrease monotonically along each backward
trajectory {yn}0n=N on Wu

β ; this fact is evident from figure 23. On a cautionary note
we add that this may be violated if the backward trajectory through y ∈ Wu

β passes
through regions with homoclinic tangencies, since these regions are also characterized
by weak stretching; figure 24 shows one such case where the monotonic decrease
in βn is violated in one iterate. Since f−n(y1) <l f

−n(y2) for all n ∈ [0, N] and, as
long as βn decreases monotonically as p− is approached along Wu

β , λn(y1) < λn(y2),
where λn(yi) is the expansion factor of f−n along the stable direction of yi. Therefore
λN(y1) < λN(y2), and the zero-diffusivity distribution at y2 is thinner than at y1. Fur-
ther, because of the larger λn(y2), σ

2
N(y2) < σ2

N(y1). Therefore a thinner zero-diffusivity
distribution at y2 is smoothed against a Gaussian with smaller variance, which means
the scalar distribution about Wu

β , in the presence of scalar diffusion, should in general
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narrow down as one moves further away from p− in terms of arclength along Wu
β ;

note that there is a (weak) gradient in the zero-diffusivity solution along Wu
β (see

figure 20 a), and θfr(y2, t = NT + t0) < θfr(y1, t = NT + t0). From figures 3(a–d)
and 6(a–d) it is evident that the numerical simulation results agree with the predic-
tions made above, with the exception of regions where the manifold Wu

β has large
curvature. Since these are also the regions where homoclinic tangencies are likely
(Farmer & Sidorowich 1991), the discrepancy is not entirely surprising. Note that
since Wu

β is not a submanifold of R2, segments of Wu
β wind back infinitesimally

close to each other such that the distributions along them may overlap, which can
make verification of the previous prediction difficult (e.g. see figure 4). Also, for
points y ∈ Wu

β that are far away from p− in terms of arclength along Wu
β , the

backward trajectory through y is bound to pass through weakly stretched regions
as Wu

β has a folded structure with several segments of large curvature signalling
the likelihood of homoclinic tangencies, and for these points the theory becomes
uncertain owing to likely violations in the assumption of monotonic decrease in βn
along the backward trajectory {yn}0n=N . The predictions are therefore more likely
to hold for the situation in figures 3(a–d) and 6(a–d) where the scalar distribution
remains localized along Wu

β up to only a relatively short distance in terms of ar-
clength along p− as opposed to that in figure 4. The arguments given above remain
unchanged if N1(ε1, y) is replaced by N0(ε0, y), and therefore the conclusions are
identical for the asymptotic scalar distribution. Moreover, since N0(ε0, y) increases
as y ∈ Wu

β moves away from p− in terms of arclength along Wu
β , the asymptotic

distribution is attained over a longer time at points further away from p− in terms
of arclength along Wu

β . Finally, as N0 increases, the asymptotic value of the stan-
dard deviation of the Gaussian weighting function will become much greater than
the asymptotic width of the zero-diffusivity solution about Wu

β , i.e. σN0
� O(1/λN0

),
in which case a Gaussian smoothing of the zero-diffusivity solution will be nearly
zero, and therefore the asymptotic scalar distribution, in the presence of small scalar
diffusion, will tend to zero as one moves far away from p− in terms of arclength
along Wu

β . Comparing figure 2(a) with figure 3(d) shows that such is indeed the
case.

We refrain from making any quantitative comparisons between scalar values ob-
tained from our random-walk schemes and that predicted using the asymptotic
shadowing result of (5.3). The main difficulty is the arbitrariness involved in choosing
t0, which is the cut-off time for the boundary layer solution of § 4 and determines the
‘initial’ distribution for the fictitious zero-diffusivity solution. While the zero-diffusivity
solution thus constructed offers a convenient heuristic tool for examining the role
of small scalar diffusion, it seems difficult to extract any quantitative information
from it. Moreover, due to the abundance of homoclinic tangencies in the near-wall
region there is a lack of good (small δ) deterministic shadowing (Ghosh 1994), and
quantitative results based on (5.3) are likely to be unsatisfactory.

For the case with surviving KAM tori enclosing the core region of the bubble, the
presence of invariant closed curves as well as the islands of stability enclosed within
precludes the possibility of applying shadowing theory. In fact, the theory becomes
uncertain whenever there are invariant curves since Wiener trajectories crossing
invariant curves will not be shadowed (Klapper 1992 a) and diffusion can produce
effects that will not be captured by the shadowing theory. For the cases considered
in this section, the flow-domain has no invariant curves and is very much the basis
for arguing that shadowing theory will continue to give the correct qualitative results
even when small δ shadowing is unlikely.
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6. Conclusions
We have examined scalar advection-diffusion in a two-dimensional flow with chaotic

particle trajectories adjacent to an active no-slip surface at the limit of large Péclet
number or small scalar diffusivity using results from dynamical systems theory. The
flow field was constructed in the form of a Taylor series expansion satisfying the
no-slip boundary condition and consistent with the Navier–Stokes equations. An
unstable manifold emanating from a point of zero time-averaged shear stress on the
no-slip boundary is found to play a dominant role in the advection-diffusion of passive
scalar from the boundary, particularly when the underlying chaotic particle motion
is widespread and the dynamics in the flow has a pronounced hyperbolic character.
It is found that the increased hyperbolicity results in scalar distributions that are
localized entirely along the unstable manifold with sharp scalar gradients. Introducing
a fictitious zero-diffusivity solution provides an understanding of the relationship
between the stirring and mixing processes and shadowing theory gives a nice physical
description of the role of small scalar diffusion as a local smoothing of fine scale
variations created by the stirring process. A novel feature in this problem is the
presence of the no-slip boundary and the interaction between the non-hyperbolicity at
the boundary and the strongly hyperbolic character of the overlying chaotic advection
in the bubble-region of the flow. The non-hyperbolicity at the boundary is found to
play an important role in the advection-diffusion process and strongly influences the
time-evolution of the scalar field. The wall-integrated flux remains O(Pe−2/3) even
in the chaotic-advection case. Introducing a time-periodic perturbation in the steady
advection field, again with low-order polynomial behaviour in space, introduces only
weak time and space dependence in the near-wall thermal boundary layer after the
initial transients have died down, resulting in weak enhancement in the asymptotic
flux over the steady-advection case. The absence of near-wall structures that have
strong temporal and spatial fluctuations parallel to the wall is the likely cause for the
observed weak time-dependence in the thermal boundary layer, and the consequent
lack of enhanced transport usually associated with turbulent flows. Our numerical
simulation results show that in the presence of widespread chaotic particle motion the
scalar distribution attains an asymptotic distribution over a time-scale that is much
shorter than the time-scale over which an asymptotic distribution is attained in the
steady flow. Moreover, this asymptotic distribution is found to be time-periodic with
the same period as that of the chaotic advection field.
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